
© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

1

OPCS screenshot.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

2

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

3

quickref(DOCS)

QUICKREF(DOCS) Optical Printer Control Systems QUICKREF(DOCS)

 NAME
 quickref - OPCS quick reference for camera operators

 OPCS QUICK REFERENCE

 *** STANDARD PROCEDURES **

 FILM MOVEMENTS

 There are two things to remember about the movements that are typical
 when the OPCS system is idle:

 1) The projectors show the SEATED IMAGE that's ABOUT TO BE SHOT

 2) The camera is UNSEATED with the shutter closed

 This way, you can look through the viewer and see the pinned, seated,
 in-focus projector image that is about to be shot.

 Unexposed film in the camera should be unseated, the camera shutter
 being closed and not exposing film.

 ORDER OF OPERATION

 It is important to be familiar with the order of how the system
 executes shooting operations:

 >> 1) Motors seek positions FIRST. (for feeds, fades, dissolves)

 >> 2) Camera exposes film SECOND.

 >> 3) Projectors advance THIRD.

 >> 4) Wedge/filter wheels are moved LAST. (autofilt)

 If a fade, feed or dissolve is pending, these will move to positions
 first.

 If the camera is told to shoot, it will shoot AFTER feed/fade/dx's
 have moved to position.

 After the camera exposes the image in the projector gate(s), the
 projector(s) advance to their new positions.

 >> Before a step print, remember that the image in the projector's
 >> gate is ABOUT TO BE SHOT. The camera always shoots first, and
 >> the projectors advance after.

 If there are any pending autofilt commands, these will move LAST.
 This way, before a wedge, you are looking at a projector image through
 the filter wheel position that has no filter in it, making it easier
 to look through the viewer before shooting a wedge.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

4

 ALLSTOP

 The allstop key stops running motors at the nearest frame, without
 affecting exposure, and prompts for ABORT or CONTINUE:

 >> CONTINUE: The shot continues shooting as if nothing happened.
 >> ABORT: Shooting stops, giving you a new command prompt.

 WINDOFF WITH SHUTTER CLOSED

 If someone has setup 'seekcap yes' in your opcsdefs.opc file, the
 following will cap the shutter and run off the frames at the camera's
 slewing speed, and then return the fader to its previous position:

 seek 100 # caps fader, runs off 100 frms on camera at
 # slew speed, and returns fader to previous
 # position.

 This is the equivalent, more obvious way, but does not use the 'slew'
 speed for the camera:

 cls cam 100 opn # Close fader, wind cam 100x, open fader

 STARTING A NEW SHOT

 Before starting a shot, you will probably want to reset your counters,
 roll off some black on the camera, and send the projectors out to their
 starting frames to prep for the first shot. Here's an actual typical
 example as typed in by a camera operator:

 load # operator loads camera & projectors
 res 0 0 0 # resets all counters to zero
 seek >120 >120 >100 # send projectors to start, winds off
 # 100 frames of black on camera.
 rat 1 1 1 spd .25 # Setup a default ratio and camera speed.
 opn # Make sure shutter is open, and that no
 # fades or dissolves are pending.

 The above commands can be put into a file, since it is done each time
 the operator starts a shot. See RUNCMD(OPCSDEFS) for defining new
 commands, and RUN(OPCS) for making and executing scripts. An example
 of making the above into a command would be:

 1. Add the following to your OPCSDEFS.OPC file:

 runcmd newshot newshot.run 2

 2. Enter 'ldefs opcsdefs.opc' to make sure the RUNCMD takes effect.
 3. Make a file called NEWSHOT.RUN with the following commands:

 load
 res 0 0 0
 seek $1 $2 >100
 rat 1 1 1 spd .25 opn

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

5

 You should now be able to type the following at the OPCS prompt, which
 will automatically run the LOAD command, reset counters, run the projectors
 out to their starting frames, etc:

 newshot >120 >120

 HOLDS

 To hold on a frame currently in the projector's gate, use the CAM command.
 Note you can specify frames, feet/frames, or absolute frame positions:

 cam 12 # run camera 12 frames
 cam 4'2 # run camera 4 feet 2 frames
 cam >12 # run camera TO frame 12 on the counter
 cam >4'2 # run camera TO 4 feet 2 frames on the counter

 STRAIGHT PRINTS

 To do a straight print, you can do it the slow way, or the fast and
 efficient way...

 do 12 cam 1 pro 1 # SLOW WAY: straight print 12x
 do 12 cam 1 pro -1 # SLOW WAY: straight reverse print 12x

 rat 1 1 rep 12 # FAST WAY: straight print 12x
 rat 1 -1 rep 12 # FAST WAY: straight reverse print 12x

 STEP PRINTS

 To do a step print of any kind, it is recommended you use RAT and REP:

 rat 2 1 rep 12 # FAST MOTION: 12x step print of every other
 # projector frame

 rat 1 2 rep 6 # SLOW MOTION: 12x step print on twos
 # Note REP 6 because camera shoots 2x each time

 rat -1 1 rep 12 # REVERSE MOTION: 12x reverse print

 CYCLES

 Sometimes it is desirable to cycle projector frames rather than do a
 simple hold. Here is a back and forth cycle (1,2,3,2,1,2...):

 do 12 rat 1 1 rep 3 pro -1 rat -1 1 rep 2

 Here is a cycle of selected projector frames (3,6,8,6,3...):

 do 12 pro >3 cam 1 pro >6 cam 1 pro >8 cam 1 pro >6 cam 1

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

6

 FADES/DISSOLVES

 1) fdi 12 cam 12

 2) rat 1 1 dxo 12 rep 12

 3) do 12 dxo 4 cam 4 seek 8 -4 dxi 4 cam 4
 ^These commands repeat 12 times from left to right.

 The first example sets up and shoots a 12x fade-in in on a still
 projector image.

 The second example sets up and shoots a 12x dissolve out of a
 moving projector image.

 The last example does (12) 4-frame cross dissolves on every 8th
 projector image, having the effect of 'weaving' still frames from
 an otherwise slow-motion moving projector image. Here's a break
 down of the command:

 do 12 dxo 4 cam 4 seek 8 -4 dxi 4 cam 4
 ----- ----------- --------- -----------
 | | | |
 | | | Shoot 4x dissolve in
 | | Projector advances 8, camera backwinds 8.
 | | (note: fader is closed after DXO 4 CAM 4
 | | finished executing, so it's OK to backwind)
 | Shoot 4x dissolve out.
 Repeat all commands to the right 12 times. One execution would do
 a single cross dissolve. 'do 12' will do 12 cross dissolves.

 EXPOSURE WEDGES

 You can use the SPD command to easily do exposure wedges.
 To do a wedge the hard way, you can make a small script out of
 the following commands:

 spd .20 cam 1
 spd .30 cam 1
 spd .40 cam 1
 spd .50 cam 1
 spd .60 cam 1
 spd .70 cam 1
 spd .80 cam 1
 spd .90 cam 1
 spd 1.0 cam 1

 This shoots a 9 frame wedge of the camera speeds between .20 and 1.0
 at .10 increments.

 There is a shorthand way to achieve the same, using the 'relative
 offset' feature in the SPD command:

 spd .20 do 9 cam 1 spd +.10

 NOTE: When done executing, the current speed speed will be left at 1.1,
 even though it won't have been shot as part of the wedge.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

7

 FILTER WEDGES

 If you have a filter wheel, you can automate wedging the filter
 wheel using the AUTOFILT command.

 For instance, the most efficient way to shoot a simple 20x wedge
 on the filter wheel:

 autofilt on cam 20

 Or, in long hand, and somewhat slower to shoot:

 home autofilt # home the filter wheel
 do 20 cam 1 go h 100 # shoot 20x, filter +100 pulses each frm

 COMBINATION WEDGE

 To shoot a combination exposure and filter wedge, you can do the
 following to wedge both the exposure (1.0 thru 0.2 on .10 increments)
 and the full 20x on the filter wheel:

 spd 1.0 do 8 autofilt on cam 20 spd -.1

 To break this down:
 spd 1.0 - start the exposure speed at 1.0
 do 8 - repeat the following commands 8 times
 autofilt on - home the filter wheel, and enable auto-wedging
 cam 20 - shoot 20x; filter wheel will move each frame
 spd -.1 - subtract .1 from exposure speed

*** AUTOMATED SCRIPTS ***

 You can setup scripts to do several operations automatically.
 Experienced operators can setup a complicated printing operation
 as a script file, so another operator can shoot it without knowing
 the intricate details involved.

 This also lets you re-run the script later if a reshoot is necessary.

 CREATING SCRIPT FILES

 You can either use a text editor to create a script of OPCS commands,
 or you can use the LOG command to have the software save commands to a
 file as you execute them. If you use the LOG command to create a file,
 you can use a text editor to make corrections or modifications afterwards.

 log myfile.log # Start a command log to the file 'myfile.log'
 # Commands executed in the OPCS software from
 # here on will be saved to the file.

 log off # This closes the logfile, and turns off
 # command logging. Note: if you quit the
 # OPCS software, it will automatically close
 # and save any log files that were in progress.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

8

 EXECUTING SCRIPTS

 Once you have a script file, you can run it by executing:

 run myfile.log # run the commands in the script

 While the script runs, the filename is shown in the runbar, along
 with the line number its currently executing.

 You may find that at a certain point, you want the script to pause
 so the operator can change filters, or do some other manual operation
 before continuing. Use the PSE command for this. Consider this excerpt
 from a script:

 fdo 12 cam 12 cam 24 # fade out and hold black
 seek >1878 - # find Scene 4A

 # HEY YOU! Wake up, and insert the ND 60 filter for Scene 4A
 @ pse

 rat 2 1 rep 400 # fast motion of guy running

 When this script executes, the 'HEY YOU' comment will appear on the
 screen, and PSE will stop with a prompt:

 # HEY YOU! Wake up, and insert the ND 60 filter for Scene 4A
 * FILE PAUSE *
 RETURN to continue, SPACEBAR to abort: _

 ...The operator can then insert the filter, and continue the shot.

 While a script is running, the operator can hit ALLSTOP, which will
 pause the script wherever it happens to be at the time, allowing the
 option of continuing or aborting.

 The operator may decide to ABORT the running script to execute other
 commands before continuing or to fix a problem. When a script is aborted,
 the software displays the line number at which the script was stopped.
 To start the script up from the same place, the operator can supply
 the 'stopped at' line number to the RUN command:

 STOPPED AT LINE 33 IN 'MYSCRIPT.RUN' # operator aborts script
 run myscript.run 33 # continue script where left off

 See the man page on 'run' for more on this.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

9

 SCRIPT TIPS

 To use scripts effectively, here are some tips:

 COMMENTS
 Scripts are great when you write them, but you'll never
 remember what they do days later just by looking at them.
 'What the hell did I set this up to do?' comes to mind.
 PUT COMMENTS IN YOUR SCRIPTS so you (and others) know
 what it does. A quick one liner comment at the top of
 your script at least. Use brief comments to describe
 lines or blocks of lines that you think might need
 description.

 AVOID LONG LINES
 Cramming lots of commands needlessly into long lines
 is best avoided when writing scripts. If nothing else,
 to make it easy to see what's going on. Also, it makes
 it easier to restart a script at a particular line.

 There's nothing wrong with putting several operations on
 one line, if they're all related.

 MODULARIZE: SMALL SCRIPTS
 It's often a good idea to break a long shot into separate
 scripts, and then make a 'main script' that calls all the
 smaller ones.

 Also, if you find yourself copying blocks of commands over
 and over into different places in a file, it's probably better
 to put these commands into a script, and then call that script.
 This avoids typos, and can simplify things greatly.

 KEEP ORIGINALS
 If you are going to use a script from another scene,
 make a copy, and then modify the copy. Never modify your
 original script if it was used for a shot that may need a
 reshoot in the future.

 SAVE YOUR FILES ON FLOPPIES
 Hard disks are great, but when they crash, you can lose
 the whole works, unless you have backups on floppies.
 Learn how to format floppies, and copy files to/from them.
 Keep related shots together on one floppy. You can even make
 subdirectories on floppies to keep shots separate.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

10

 STANDARDIZE RECORD KEEPING
 Come up with some sort of standard for keeping track of files
 for your shots. Since filenames can have up to 8 letters (plus
 3 letter extensions), you don’t have much flexibility, and can
 end up with cryptic insanity such as:

 ILM057T2.RUN # insane file name
 | | |
 | | 'Take 2'
 | Shot or scene number
 3 letter job name

 A better technique is to use subdirectories, allowing you the
 freedom to use any filenames you want (since people tend to make
 their own names for files anyway):

 ILM\SHOT05A\DXTEST.RUN # first take
 ILM\SHOT05A\DXTEST2.RUN # second take
 ILM\SHOT05A\FINAL.RUN # final shot used
 | | |
 | | Any filenames appropriate
 | Shot directory
 Job directory

 *** MOTION CONTROL MOVES ***

 The OPCS software supports motion control to the extent that you can
 either specify moving motors with the GO(OPCS) command, or by
 an ascii file containing columns of numbers that represent absolute
 positions using the FEED(OPCS) command. Channels can be moved by
 hand and 'key frames' can be created using the JOG(OPCS) command.

 OPCS does not have any curve editors or graphing programs built into
 it. However, OPCS does come with some external commands that help you
 create FEED(OPCS) files. These external commands can be made to look
 like they're part of OPCS using RUNCMD(OPCSDEFS) and DOSCMD(OPCSDEFS).

 You can also generate FEED(OPCS) files by either use existing 3rd party
 software (like Kuper) or your own custom C programs. FEED files are
 simple ascii files, which you can even create using a text editor.

 OPCS does *NOT* support streaking. See below, STREAKING.

 PANS

 Pans are relatively straight forward. They usually involve one or
 more axes that simply move to a position before shooting.

 /* DOCUMENTATION IN PROGRESS */
 Show examples of how to create and shoot pans.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

11

 ZOOMS

 Zooms are somewhat more complicated than simple pans by two peculiarities:

 1) Follow focus
 2) Exposure compensation

 Regarding #1, focus is usually achieved by moving the lens, and having
 the camera move relative to it. See INTERP(OPCSDEFS) for how to configure
 auto-focus.

 For manual control of focus, you can run the focus channel separately
 using either FEED(OPCS) or go(OPCS). Simply specifying the focus channel
 for movement will override auto-focus.

 Regarding #2, as you zoom into the film frame, light is lost. This is
 because the same amount of light for 1:1 spreads out the more you zoom
 in. Exposure speed can compensate for the lost light by slowing the
 exposure.

 Exposure can either be auto-compensated with SPDINTERP(OPCSDEFS) or
 by manual specification in a FEED(OPCS) file by specifying a column
 of numbers to the special channel 'x'.

 /* DOCUMENTATION IN PROGRESS */
 Show examples of how to create and shoot zooms.

 STREAKING

 OPCS does *NOT* support streaking. It never will. This is advertised
 in the FAQ, and is adamantly underlined.

 If you want streaking capabilities, that is a whole other bag of worms
 which is best handled by dedicated motion control software, such as that
 supplied by Kuper Controls. OPCS does not purport to be a full on motion
 control system, and streaking is where the line is drawn.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

12

 *** MISCELLANEOUS TIPS ***

 NEW COMMAND LINE EDITING (K2.00 AND UP)

 In OPCS version K2.00 and higher, line editing and a command history
 have been added to make it easier to retype and edit commands.

 More like a text editor or word processor, you can interactively
 edit commands, using LEFT/RIGHT arrow to move back into a long line
 to make changes, Delete characters, insert characters, etc:

 Up Arrow -- previous line in command history (^P)
 Dn Arrow -- next line in command history (^N)
 Lt Arrow -- move reverse one char on current line (^B)
 Rt Arrow -- move forward one char on current line (^F)
 Backspace -- backspace and delete (^H)
 Delete -- delete character (^D)
 Home -- move to start of current line (^A)
 End -- move to end of current line (^E)
 Ctrl-Home -- jump to top of command history
 Ctrl-End -- jump to bottom of command history (current line)
 Ctrl-Left -- word left
 Ctrl-Right -- word right
 ^K -- clear to end of line
 ^U -- clear current line (hit again to 'undo')
 ^V -- enter next character literally
 ESC -- clear current line (hit again to 'undo')
 F3 -- re-type last command
 F4 -- re-run last command (F3 + Enter)

 OPERATOR PREFERENCES

 The following OPCSDEFS.OPC commands can be set up to the
 operator's taste. You will not 'mess anything up' if you
 change these commands, they are only for the operator to
 play with, and will not effect motors, running speeds, etc.

 bigcounters [on or off]
 If you prefer the large screen counters set 'bigcounters on'.
 If you would rather have more screen space to see commands
 and files, you may want to try 'bigcounters off'.

 leadingzeroes [on or off]
 If you don’t like all the leading zeroes in the counter
 displays, you can turn them off with 'leadingzeroes off'.

 pro2display [on or off]
 If you have a single headed printer, you will probably
 prefer not to have the unwanted 'projector 2' counter on
 the screen. You can turn it off by setting 'pro2display off'.
 However, if you have an aerial head, you will want this
 setting 'on'.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

13

 If you want to change these values permanently, alter the
 OPCSDEFS.OPC file. If you just want to try them out with out
 having them be a permanent change, you can use the LDEFS command
 to read commands from the keyboard:

 ldefs con # type this at the OPCS prompt
 bigcounters off # try a different setting
 ^Z # (type control-z and hit return)
 # Back in OPCS, big counters off.

 SPECIAL COMMAND USAGE: THE CALCULATOR

 At any time in the OPCS software, you can do calculator entries.
 Simply form a math expression that is encapsulated in parentheses.
 Do this on an empty OPCS command line. When you hit return, the answer
 will be displayed:

 (20*(12+8+9+54)) # type this in to add up your hours..
 1660.0000 # Result displayed

 If you are in DOS, there is a 'calc' command that will let you do
 the same thing:

 C:\USR\OPCS>calc # run CALC from DOS
 (34+sqrt(47)) # type in a math expression
 40.855655 # Result

 (3+4+5) # keep entering commands..
 12.000000 # Result

 ^C # Type CONTROL-C to return to DOS
 C:\USR\OPCS> # (back in DOS)

 These are the math functions allowed currently for math expressions:

 /*** MATH FUNCTIONS ***/
 sqrt() log() exp()
 sin() cos() tan()
 asin() acos() atan()
 radians() degrees()

 /*** NUMERIC EXPRESSIONS ***/
 -12 # negative 12
 +34 # positive 34
 0x3ff # hex representation for 1023 decimal

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

14

 GETTING HELP

 Use the MAN command to get general and specific documentation.
 The '-k' flag tells MAN to be general, and look for anything related
 to the argument that follows. In the following examples, case is
 important (i.e. upper/lower case):

 *** General Documentation **

 man -k OPCS: # list OPCS commands
 man -k OPCSDEFS: # list opcsdefs commands
 man -k OPCS # list OPCS related commands
 man -k # list everything MAN knows about

 Any if the above will display a long list of commands, followed by
 simple one line descriptions of each command. With this list, you
 can then zero in on any of the commands to get more complete
 documentation...

 *** Detailed Documentation ***************************************

 man cam # specific docs on the CAM command

 Often there are 'non-standard' utilities in the \bin directory. These
 can USUALLY be documented with the 'man' command. (e.g. HOME.EXE is
 documented with 'man home') These utilities are useful, and should be
 used by anyone willing to learn them.

 *** SHOOTING **

 PUSH BUTTON SHOOTING - THE 'KEY' COMMAND
 --
 The 'KEY' command allows the operator to use buttons to control the
 camera, projector and fader much like the mechanical printer controls
 that many people are used to.

 The function keys across the top of the keyboard are windoff buttons.
 Number keys (below the function keys) control ratio shooting, counter
 resets, fade/dissolve setups, fader open/close, etc.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

15

 If you don't have a keyboard template which shows which keys do what,
 refer to the man pages on KEY(OPCS), and make your own. It is best to
 have some sort of template on the keyboard.

 Hitting ESC or Q will exit the 'KEY' mode so you can execute any of the
 other OPCS commands.

 The following shows common operations the cameraman wants to do, showing
 the keystrokes that do them. 'Operation' is the label on the keyboard
 template, 'Key to hit' is the actual keyboard key to hit.

 Only in cases where "Then type:" is specified, it is assumed you should
 always hit ENTER after typing the specified values. [Space] is used to denote
 hitting the spacebar.

 COUNTERS

 To reset the camera counter to zero:

 Operation Key to hit
 --------- ----------

 RES CAM | 6 | Then type: 0 [Enter]

 For the main projector, same thing, but hit '5'. For the aerial
 projector, hit '4'.

 To set the counters to other values, type the desired value.
 To set the camera counter to 100:

 Operation Key to hit
 --------- ----------

 RES CAM | 6 | Then type: 100 [Enter]

 WINDOFF WITH SHUTTER CLOSED

 The following shows how to cap the shutter, windoff some frames on
 the camera, then open the shutter again:

 Operation Key to hit
 --------- ----------

 CLS | = |

 Then:

 CAM FWD | F9 | (Camera runs while F9 pressed)

 Then:

 OPN | - |

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

16

 Windoff 100 frames on the camera, shutter automatically caps:

 Operation Key to hit
 --------- ----------

 SEEK | BACKSPACE | Then type: 100 [Enter]

 Windoff camera out to frame #304, shutter automatically caps:

 Operation Key to hit
 --------- ----------

 SEEK | BACKSPACE | Then type: >304 [Enter]

 Send aerial to frame #200, main to #100, and windoff 50x on camera:

 Operation Key to hit
 --------- ----------

 SEEK | BACKSPACE | Then type: >200 [Space] >100 [Space] 50
[Enter]

 STRAIGHT PRINTS

 For a 1:1 step print with ONLY main projector (single projector system):

 Operation Key to hit
 --------- ----------

 RAT | 3 | Then type: 1 [Space] 1 [Enter]

 Then:

 REP+ | 1 |

 ..same thing, but on an aerial system:

 Operation Key to hit
 --------- ----------

 RAT | 3 | Then type: 0 [Space] 1 [Space] 1 [Enter]

 Then:

 REP+ | 1 |

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

17

 For a 1:1:1 step print on an aerial system:

 Operation Key to hit
 --------- ----------

 RAT | 3 | Then type: 1 [Space] 1 [Space] 1 [Enter]

 Then:

 REP+ | 1 |

 STEP PRINTS

 For a 2:1 step print:

 Operation Key to hit
 --------- ----------

 RAT | 3 | Then type: 2 [Space] 1 [Enter]

 Then:

 REP+ | 1 |

 For a 2:2:1 step print:

 RAT | 3 | Then type: 2 [Space] 2 [Space] 1 [Enter]

 Then:

 REP+ | 1 |

 FADES/DISSOLVES

 For a 24 frame fade in on a held projector frame:

 Operation Key to hit
 --------- ----------

 FDI | 7 | Then type: 24 [Enter]

 Then:

 CAMERA FWD | F9 |

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

18

 For a 24 frame fade in on a straight print, make sure your
 ratio is currently 1:1 (See STRAIGHT PRINTS) then:

 Operation Key to hit
 --------- ----------

 FDI | 7 | Then type: 24 [Enter]

 Then:

 REP+ | 1 |

 (REVISION 3.00 OR LATER)
 To set up a fade in, hit the FADE IN button, and enter the number of frames
 for the fade. When you run the camera, the fade will take place. Fade outs
 and dissolves are set up the same way. You can cancel a fade by hitting
 the FADER OPEN or FADER CLOSE buttons.

 NOVICE'S GUIDE TO DOS COMMANDS

 Note that to run a DOS command, you should precede the command
 with a '!' when you are in the OPCS software. Or, if you prefer,
 you can set up more DOSCMD(OPCSDEFS) entries in your OPCSDEFS.OPC
 file so you can type in certain DOS commands without the need for
 using '!'.

 *** Formatting Floppy Disks ***

 format a:

 Be careful with the DOS 'format' command.. If you don’t supply any
 arguments to format, it will often default to formatting the
 hard disk! An easy mistake to make.

 *** Directory Listings **

 The DIR command is how to get directory listings:

 dir # list files in the current directory
 dir *.run # list files that end in .run
 dir m*.* # list all files that start with 'm'
 dir ilm/scn4a/*.* # list all files in the ilm/scn4a directory
 dir a: # list files on floppy drive

 Most versions of DOS support sorting of file listings.
 Dos 6.0 supports these:

 dir /on # sort by name
 dir /ox # sort by extension
 dir /od # sort by date (oldest first)
 dir /os # sort by size

 See 'dir /?' for a list of all the options dir supports.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

19

 COPY FILES

 The copy command has two arguments: a source and a destination.
 If the destination is not supplied, the current drive is assumed
 to be the destination.

 copy *.run a: # copy files ending in .run to floppy
 copy a:*.run . # copy files ending in .run FROM floppy
 copy myfile.pos save.pos # make a copy of myfile.pos to save.pos

 DELETE FILES

 When you delete files, they don't come back, so BE CAREFUL.
 Especially BE CAREFUL WHEN DOING WILDCARD DELETES!

 del junk.pos # deletes 'junk.pos' from disk
 del a:crap.jnk # deletes crap.jnk from floppy disk
 del crap*.* # deletes files that start with 'crap'
 del *.* # deletes ALL FILES - Watch out!

 MAKING SUB DIRECTORIES

 mkdir fred # makes a subdir 'fred' in the current dir
 mkdir fred\jobs # makes a subdir 'jobs' in 'fred'
 mkdir a:save # makes a 'save' subdir on the floppy

 CHANGING INTO/OUT OF SUBDIRECTORIES

 cd fred # go into 'fred' directory
 cd jobs # go into 'jobs' directory
 cd .. # go back one to 'fred'
 cd # tells you what directory you are in

 REMOVING SUB DIRECTORIES

 del fred\job*.* # clean out JOB directory of all files first
 rmdir fred\job # removes JOB directory (FRED remains)
 rmdir fred # removes FRED directory

 SEARCHING FOR FILES

 The 'whereis' command will search the entire hard disk for filenames you supply
 as an argument, and shows the full pathname to any matching files. Examples:

 whereis opcsdefs.opc # searches for all OPCSDEFS.OPC files
 whereis foo*.* # searches for all files starting with "foo"

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

20

 HARD DISK BACKUPS

 You should definitely refer to your DOS manual for this one.
 See the docs on BACKUP and RESTORE commands. But here are a
 few examples:

 HOW TO BACKUP THE C: DRIVE

 mkdir a:\opcs
 xcopy /s c:\opcs a:\opcs

 HOW TO RESTORE THE C: DRIVE FROM BACKUPS
 --
 cd \
 mkdir \opcs
 xcopy /s a:\opcs c:\opcs a:

 LOOKING AT TEXT FILES

 type myfile.pos # Type out myfile.pos in one blast
 more myfile.pos # View the file a page at a time

 HOW TO EDIT THE HIDDEN C:\MSDOS.SYS FILE
 --
 The MSDOS.SYS file lets you disable Windows 95/Windows 98 from starting,
 so you can boot straight into DOS. But to edit the file, you have to turn
 off its hidden system attributes, then turn them back on when done:

 attrib -S -H -R c:\msdos.sys # Remove system/hidden/readonly
 edit c:\msdos.sys # Edit file, make changes
 attrib +S +H +R c:\msdos.sys # Restore system/hidden/readonly

 The recommended contents of the MSDOS.SYS file to ensure only DOS boots
 (and not Windows) for OPCS is:

 ;FORMAT
 [Options]
 BootGUI=0
 Logo=0
 BootDelay=0

OPCS BOOT INSTALL
 This text describes the boot process for OPCS, when the machine
 starts up. This assumes general familiarity with IBM PCs and
 DOS terminology.

 It is assumed you have:

 o An IBM PC with ISA or EISA slots
 o An RTMC card or A800 card plugged into one of the ISA slots
 o 512K or more of system memory.
 o A hard disk with MS-DOS 6.xx, Win95, or Win98 installed
 o For Win95/Win98: configured to boot into DOS mode (BootGUI=0)
 o AUTOEXEC.BAT and CONFIG.SYS configured as described below

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

21

 CONFIG.SYS

 Your C:\CONFIG.SYS should at minimum have these (or similar) settings:

 DEVICE=C:\WINDOWS\HIMEM.SYS
 DEVICE=C:\WINDOWS\COMMAND\ANSI.SYS
 DEVICE=C:\OPCS\BIN\OPCSBOLD.SYS
 FILES=10
 BUFFERS=20

 HIMEM.SYS is optional but recommended.
 ANSI.SYS is required but might be in a different directory.
 Values for FILES/BUFFERS are minimum.
 OPCSBOLD.SYS is required if 'nixie' counters are used.

 AUTOEXEC.BAT

 Your C:\AUTOEXEC.BAT should have at minimum these settings:

 set PATH=\OPCS\BIN;%PATH%
 set MANPATH=c:/OPCS/MAN/MAP

 ..and at least one of the following drivers should be started,
 depending on which stepper motor pulse generator card you have
 installed in the machine's ISA slot:

 A800DRV.COM - for the a800 card
 RTMC48.COM - for the RTMC48 or Kuper Industrial card
 MDRIVE.COM - for the RTMC16 card

 If started with no command line flags, the drivers assume
 the cards are using the default jumper settings (usually
 baseaddr=300, IRQ=5).

 If your jumper settings are different than the defaults, be sure
 to specify the appropriate command line options that match your
 card's jumper settings.

 Invoke the driver with the "-help" flag to see the driver's command
 line options, e.g.

 a800drv -help
 rtmc48 -help
 mdrive -help

 If a driver doesn't show a help screen, that driver ONLY supports
 the default jumper settings.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

22

 For example, if your A800 card has default settings, you can just put:

 a800drv

 ..in your AUTOEXEC.BAT.

 If, however, your A800 card has the BaseAddr set to 340, instead
 of the default 300, then you'd have to start the driver with:

 a800drv -b340 -i5
 | |
 | IRQ5
 BaseAddr 340

ORIGIN
 Gregory Ercolano, Topanga, California 04/12/00

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

23

This page intentionally left blank.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

24

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

25

INTRO: OPCS

INTRO(OPCS) Optical Printer Control System INTRO(OPCS)

OPCS MANUAL SECTIONS
 OPCS - The operator commands reference and main application
 OPCSDEFS - The config file (OPCSDEFS.OPC) commands
 DOCS - General docs on hardware, support tools, tutorials, etc.

INTRODUCTION
 If you're new to the OPCS software, start with:

 1) 'man quickref' -- The operator's tutorial. See QUICKREF(DOCS)
 2) 'man -k OPCS:' -- List all OPCS commands (see OPCS COMMANDS below)
 3) 'man -k OPCSDEFS:' -- List all config file commands
 4) 'man syntax' -- General syntax of the OPCS commands
 5) 'man math' -- How to use OPCS's built-in online calculator

 You can quickly list all the OPCS commands by running the '?' inside OPCS.
 For any commands you don't remember, just run 'man' followed by the command
 from that list to see the docs. (e.g. 'man cam', 'man pro', 'man fdi', etc.)

 What follows is a list of all OPCS commands with a one line description
 of each, which at the time of this writing is:

 ! - execute a system command (bang)
 # - the # comment character (comment)
 autofilt - enable/disable the auto-wedging filter wheel
 calc - calculator usage/shortcuts
 cam - shoot frames on just the camera
 check - check counter values for specific channels
 chk - check pro/cam/shu counters against arguments
 cls - close the fader
 custom - recommended custom commands implemented by local
 do - repeat commands several times
 dxi - set up a dissolve in
 dxo - set up a dissolve out
 feed - feed new posns to motors every frame
 fdi - set up a fade in
 fdo - set up a fade out
 go - position motors go to new positions
 jog - jog 'positioning' motors interactively
 key - use keys to run motors
 load - unseats projectors for loading film
 ldefs - load a motor definitions file
 lineup - (CUSTOM) seat camera for lineups
 load - (CUSTOM) unseat projectors for film loading
 log - log all entered commands to a file
 motors - enable/disable motors for script debugging
 opn - open the fader
 pro - shoot frames only on the main projector
 pro1 - shoot frames only on the main projector (#1)
 pro2 - shoot frames only on the aerial projector (#2)
 pse - will pause a running script
 rat - change the current pro/cam ratio
 rep - shoot the current pro/cam ratio
 run - run an OPCS script file
 res - reset/preset the projector/camera counters
 reset - reset any channels to certain values
 seek - seek to positions quickly on camera/projector(s)
 shu - move the fader to a position
 show - display current positions for all 8 motors
 spd - change the camera's rotation speed
 unlock - (CUSTOM) unlock motors for manual adjustment
 velrep - load and run a .vrp file (velocity repeat)

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

26

 For more details on how the OPCS application itself, see 'man opcs',
 which describes OPCS briefly:

 > Command line editing hotkeys
 > Environment variables
 > Common error messages

 SEE ALSO
 OPCS(DOCS) - OPCS main program
 SYNTAX(DOCS) - General syntax of OPCS commands
 A800(DOCS) - Notes on the A800 stepper motor control board
 RTMC48(DOCS) - Notes on the RTMC48 stepper motor control board
 CENTENT(DOCS) - Centent driver wiring
 QUICKREF(DOCS) - Camera operator quick reference ***
 OPCSETUP(DOCS) - OPCS hardware/software setup details ***
 OPCSHARD(DOCS) - OPCS hardware ***
 VERSION(DOCS) - OPCS version history

 ORIGIN
 Gregory Ercolano, Los Feliz California 08/17/20

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

27

autofilt(OPCS)

AUTOFILT(OPCS) Optical Printer Control System AUTOFILT(OPCS)

 NAME
 autofilt - enable/disable the auto-wedging filter wheel

 USAGE
 autofilt [-nohome] [on|off]

 EXAMPLES
 autofilt on # Enables auto-filter wheel movement,
 # sends the filter wheel to home position.

 autofilt off # Disables auto filter wheel.
 # sends filter wheel to home position.

 autofilt # Prints if autofilt mode is ON or OFF

 autofilt -nohome on # Enables auto-filter wheel movement,
 # does NOT home or reset counter to zero.

 DESCRIPTION
 Sets up the filter wheel to move automatically each time the camera
 finishes shooting a frame. The filter wheel begins moving immediately
 after each exposure, while the shutter is closing.

 To shoot a 20x wedge:

 autofilt on cam 20 autofilt off

 Both 'autofilt on' and 'autofilt off' automatically send the filter wheel
 to its home position (it invokes 'home autofilt') and zeroes the channel's
 counter. This behavior can be disabled with the -nohome option.

 OPERATION
 'autofilt on' will do the following:

 > Executes 'home autofilt' (unless -nohome is specified)
 to home the wheel to a position that has NO FILTER.

 > Zeroes the filter wheel channel's counter

 > Like fades/dissolves, commands that involve exposing the camera
 (CAM, REP, etc) will first expose the filter in the gate BEFORE
 advancing the filter wheel. The filter will NOT move during
 SEEK(OPCS) or GO(OPCS).

 SETUP NOTES
 It is assumed the filter wheel speeds have been configured to move to
 the next filter position quickly enough so that it stops before the
 camera begins exposing the next frame. See FILTER(OPCSDEFS) for a
 full technical description.

 SEE ALSO
 FILTER(OPCSDEFS) - define channel to control a filter wheel

 ORIGIN
 Version K1.12e+ Gregory Ercolano, Venice California 04/10/98

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

28

!(OPCS)

!(OPCS) Optical Printer Control System !(OPCS)

 NAME
 ! - execute a DOS command

 USAGE
 ! [DOS command]
 - or -
 [OPCS cmds] ! [DOS cmd] ! [OPCS cmds] ! [DOS cmd] ...

 EXAMPLES
 ! del /y junk.foo # delete the file junk.foo
 ! dir *.run ! cam 5 pro 3 # run 'dir *.run', then shoot

 DESCRIPTION
 Execute a single command in MS-DOS without leaving the OPCS software.

 All characters to the right of the '!', up to the end of line,
 or '#', or another '!', are passed to DOS for execution.

 To allow several DOS commands on a single line, or DOS calls mixed
 with OPCS commands, you can make repeated use of the '!' character
 to switch back and forth within a single line:

 ! <DOS-command> ! <OPCS-command> ! <DOS-command> ..

 Example:

 ! copy *.pos a: ! cam 12 pro 12 ! dir a:

 The above runs 'copy *.pos a:' in DOS, then runs the CAM and PRO
 commands in OPCS, then runs the "dir a:" command in DOS again.

 Not only can you run DOS commands, but you can run DOS batch
 scripts (.BAT), perl scripts, or other C programs such as the
 HOME(DOCS) program.

 OTHER EXAMPLES
 !copy a:test . # Copy the file 'fred' from the A: drive to
 # the current directory.
 !command # Run a DOS shell..'exit' returns to OPCS

 SEE ALSO
 DOSCMD(OPCSDEFS) - define DOS commands that don’t need the '!' prefix

 ORIGIN
 Adapted after Unix utilities like vi(1) and ed(1).

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

29

cam(OPCS)

CAM(OPCS) Optical Printer Control System CAM(OPCS)

 NAME
 cam - shoot frames on the camera

 USAGE
 cam [value] # run camera so many frames fwd or reverse

 EXAMPLES
 cam 12 # run camera 12 frames forward
 cam -12 # run camera 12 frames in reverse
 cam 54'11 # run camera 54 feet 11 frames
 cam >0 # run camera TO counter frame zero
 cam >-32 # run camera TO counter frame -32
 cam >34'8 # run camera TO counter 34 ft 8 frms
 cam >(108/(10+2)) # run camera 9 frames (See SYNTAX(OPCS))

 DESCRIPTION
 This command will shoot the specified frames on the camera
 using the current shutter speed set by SPD(OPCS). The current
 shutter speed is always displayed at the top/right of the screen.

 Negative numbers will shoot in reverse. So -100 will run the
 camera in reverse 100 frames.

 Values can also be specified as feet/frames (e.g. 2'15), or as
 a mathematical expression (as shown above).

 If the value is preceded by '>', this indicates the camera
 should "go to" the absolute camera frame counter value.

 For fast windoffs that don't involve exposing film, use SEEK(OPCS)
 which uses the camera's slewing speed and caps the fader before
 moving the camera.

 FADE/DX
 If there are any pending fades or dissolves, the fader will FIRST
 move to its next position before the camera exposes a frame.

 FEED
 If FEED(OPCS) is enabled, the motors will /first/ move to position
 before the camera exposes a frame. (Similar to fade/dx)

 AUTOFILT
 If AUTOFILT(OPCS) is enabled, the camera will first expose the filter
 in the gate before moving the filter wheel. (Like the projector, what
 you see in the gate before shooting is what's about to be shot)

 ALLSTOP
 Hitting the ALLSTOP key (usually the (`) key) will halt the motors
 at the nearest frame. ALLSTOP is safe during shooting; it will not
 affect exposure, and always leaves the shutter closed after stopping.
 The allstop key can be redefined by ALLSTOP(OPCSDEFS).

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

30

BUCKLE/VIEWER
 The camera WILL NOT RUN if the buckle is tripped. When exposing film,
 it also won't run if the viewer is open. If either condition occurs
 while the camera is shooting, the motors will stop with an error at
 the nearest frame, similar to ALLSTOP.

 If 'hardware no' is in effect, the buckle/viewer state is ignored,
 so that the OPCS software can run on remote computers that are not
 physically connected to an optical printer.

 TENSION MOTORS
 Before the camera or projector move, the appropriate tension motors
 are enabled, to ensure take-ups are in correct modes for film motion.

 COUNTER OVERFLOWS
 The software internally manages frame numbers in 32-bits,
 and therefore can handle values in the range of +/-2 billion.

 However, the frame counter /display/ has a limited number of
 characters it can display, causing it to 'clock over' like
 the odometer of a car.

 For 'bigcounters yes' (See BIGCOUNTERS(OPCSDEFS)), the limit
 is 6 digits, i.e. -99,999 thru 999,999.

 For 'bigcounters nixie', in K2.10 and up supports 8 digits,
 i.e. -9,999,999 thru 99,999,999.

 In these cases where the counter overflows, it 'clocks over'
 to zero. In version K2.10 and up, a hash flag appears at the
 left of the counter display, warning of counter overflow, e.g.:

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

31

 ..or in "ASCII art", that would be:

 ##
 #### ## ## ##
 ### ## ## #### ##
 ## ## ## # ## ## ##
 ## ## ## ## ## ## ##
 #### ## ## ## ## ##
 ### ## ## ## ## ##
 ## ## ## # ## ## ##
 ## ## ## ## #### ##
 #### ## ## ##
 ##

 Similarly, negative underflows (counts below zero) clock to
 zero displaying a negative sign prefix.

 For 'bigcounters yes', counter progression works this way, where
 '//' represents the hashmark:

 Actual Frame 'bigcounter yes' Display
 ------------ ------------------------
 -100,002 // -2 <-- wraps to -2, shows hashmark
 -100,001 // -1 <-- wraps to -1, shows hashmark
 -100,000 // 0 <-- wraps to -0, shows hashmark
 -99,999 -99,999
 -98,999 -98,999
 : :
 -1 -1
 0 0
 1 1
 : :
 999,998 999,998
 999,999 999,999
 1,000,000 // 0 <-- wraps to 0, shows hashmark
 1,000,001 // 1 <-- wraps to 1, shows hashmark
 : :

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

32

 For 'bigcounters nixie', in version K2.10 and up, counter progression
 works this way:

 Actual Frame 'bigcounters nixie' Display
 ------------ ---------------------------
 : :
 -10,000,002 // -2 <-- wraps to -2, shows hashmark
 -10,000,001 // -1 <-- wraps to -1, shows hashmark
 -10,000,000 // -0 <-- wraps to -0, shows hashmark
 -9,999,999 -9,999,999
 -9,999,998 -9,999,998
 : :
 -1 -1
 0 0
 1 1
 : :
 99,999,998 99,999,998
 99,999,999 99,999,999
 100,000,000 // 0 <-- wraps to 0, shows hashmark
 100,000,001 // 1 <-- wraps to 1, shows hashmark
 100,000,002 // 2 <-- wraps to 2, shows hashmark
 : :

 This 'clock over' behavior is only true of the display; internally
 the software still keeps track of the /actual/ positions, so commands
 like 'cam >2000000' will still work correctly.

 Note that 'bigcounters small' and 'bigcounters mocon' does not
 clip digits at all, and can display the full capabilities of 32bit
 values.

 > Use 'bigcounters small' to maximize operator's screen history
 (21 lines of screen history)
 > Use 'bigcounters mocon' to monitor all channels for mocon moves.
 (18 lines of screen history)
 > Use 'bigcounters nixie' for normal printing and medium sized counters.
 (14 lines of screen history)
 > Use 'bigcounters large' for normal printing and largest counters.
 (12 lines of screen history)

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

33

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

34

 SEE ALSO
 -- Operator Commands (OPCS) --
 PRO / CAM - run frames on the projector / camera
 RAT, REP - tandem shooting (interlock)
 RES - reset computer's pro/cam counters to new values
 CHK - check if the pro/cam/shu counters are at certain values
 SEEK - run the camera/projector at slewing speeds
 FEED - feed motion control moves to motors every camera frame
 VELREP - special purpose velocities for tandem shoots (eg. YCM)
 AUTOFILT - enable/disable the auto-wedging filter wheel

 SHU - send the fader shutter to absolute position in degrees
 OPN, CLS - open/close the fader shutter
 DXI, DXO - set up a dissolve
 FDI, FDO - set up a fade

 MATH(DOCS) - math expressions (for use in frame specifications)
 SYNTAX(OPCS) - online calculator and OPCS math expression syntax
 MOTORS - enable/disable motor hardware for debugging scripts

 -- Setup/Definitions (OPCSDEFS) --
 SPDINTERP - configure exposure speed interpolations
 SPD - configure camera's default exposure and slewing speeds
 RAMP - configure camera's maximum accelerations and velocities
 MRP - configure 'maximum ramp pulses' for shutter motors
 PPR - configure 'pulses per revolution' for a motor

 BIGCOUNTERS - enable/disable the large counter display
 FPF - configure the 'frames-per-foot' (16mm, 35mm, Vista..)
 BUCKLE, VIEWER - configure buckle/viewer sensor's ports and bitmasks
 TENSION - configure tension motors
 ALLSTOP - define the ALLSTOP key
 HARDWARE - enable/disable using printer hardware

 HISTORY
 This command was in the first version of OPCS (Apple][+).

 ORIGIN
 Gregory Ercolano, Los Feliz California 12/18/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

35

check(OPCS)

CHECK(OPCS) Optical Printer Control System CHECK(OPCS)

 NAME
 check - check counter values for specific channels

 USAGE
 check <chans> <val[,val..]>

 Where:
 <chans> is either a single channel letter, or a list of
 channel letters with no spaces, e.g. "abcd"
 <val[,val..]> is either a single value, or a comma separated
 list of counter values, one for every channel in <chans>

 EXAMPLES
 check f 1000 -- check f channel's counter is 1000
 check fg 1000,2000 -- check f counter is 1000 and g is 2000

 DESCRIPTION
 “check” verifies counter values are where they should be.

 Useful in RUN(OPCS) scripts to help catch errors during in script
 programming and shooting.

 If a check fails, an error warns of the discrepancy, prompting

 the operator with an ABORT/CONTINUE option.

 It's expected that for each of the <chans> specified, the exact same
 number of counter values are specified in the comma separated <val>
 list that follows.

 Counter values must be comma delimited, and can either be numeric,
 math expressions, or feet/frame format. Example:

 check ab (150-10),13'4 -- check if a's counter is 140
 and if b's counter is 13'4

 check a (pro) -- check if counter for aerial (a)
 has the same value as main (pro)

 check ab (cam+5),(cam+5) -- check if aerial (a) and main (b)
 counters are the same as cam's

 Note in OPCS the 'a' channel is the aerial projector, 'b' is the
 main projector, 'c' is camera, and 'd' is the fader shutter. Other
 channel assignments depend on your local configuration.

 HISTORY
 Early OPCS versions only managed cam/pro/shu, so CHK(OPCS) was designed
 for that. Motion control channels were later added, so the newer
 CHECK(OPCS) was added, allowing *any* motor channel to be checked.
 CHK(OPCS) is kept for backwards compatibility.

 SEE ALSO
 CHK(OPCS) - older command that only checks frame counters and fader
 RUN(OPCS) - run an OPCS script file
 MOTORS(OPCS) - enable/disable motors for debugging scripts

 ORIGIN
 Gregory Ercolano, Altadena California 05/28/20

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

36

chk(OPCS)

CHK(OPCS) Optical Printer Control System CHK(OPCS)

 NAME
 chk - check if the pro/cam/fader counters are at certain values

 USAGE
 chk [pro] [cam] [fader] # single head printer
 chk [pro2] [pro1] [cam] [fader] # dual headed printer

 EXAMPLES
 chk 10 13'12 0
 | | |
 | | Check if fader is closed
 | Check if camera counter reads 13 feet 12 frames
 Check if projector counter reads '10'

 DESCRIPTION
 “chk” verifies counter values are where they should be.

 Useful in RUN(OPCS) scripts to help catch errors during in script
 programming and shooting.

 If a check fails, an error warns of the discrepancy, prompting

 the operator with an ABORT/CONTINUE option.

 Arguments can be either in frames or in feet/frames format.
 Arguments can also be selectively bypassed with '-', example:

 chk - - 170 # check if fader at 170 degrees
 chk 120 - - - # check if pro2 counter at frame 120

 EXAMPLE
 Assuming the counters read: PRO=34, CAM=12, SHU=0, and the following
 command is executed from a running script:

 chk 34 10 170

 ...all running scripts will stop, and the following message printed:

 CHK: Camera not at 10 frames
 CHK: Fader not at 170 degrees
 Hit any key to continue (ALLSTOP TO ABORT)

 HISTORY
 CHK(OPCS) is the old command limited to only checking cam/pro/fader.

 CHECK(OPCS) is the newer command which can check any channels
 including motion control channels.

 SEE ALSO
 CHECK(OPCS) - newer command that can check all counters
 RUN(OPCS) - run an OPCS script file
 MOTORS(OPCS) - enable/disable motors for debugging scripts

 ORIGIN
 Gregory Ercolano, Los Feliz California 11/29/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

37

comment(OPCS)

COMMENT(OPCS) Optical Printer Control System COMMENT(OPCS)

 NAME
 '#' - the comment marker

 USAGE
 # [comment text]

 EXAMPLE
 # This is a valid comment
 cam 12 pro 12 # This is also a valid comment

 DESCRIPTION
 The pound sign '#' is used as a delimiter for comment text. All text
 to the right of '#' up to the end of the line will be ignored by the
 OPCS command parser. This allows you to place text comments into run
 scripts without fear of having the comment executed as a command.

 '#' can appear as the first character on a line, or after the last
 command on a line.

 cam 12 pro 12 # Comment text can be anything

 BUGS
 None.

 ORIGIN
 Adapted after examples set in such UNIX utilities as SH, CSH, and
 many others. # is a standard way of delimiting comments under UNIX.
 UNIX is a trademark of AT&T.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

38

custom(OPCS)

CUSTOM(OPCS) Optical Printer Control System CUSTOM(OPCS)

 NAME
 custom - custom commands configured by the local site engineer

 OVERVIEW
 These are recommended custom commands, which are best implemented
 by the local site's engineer during setup, using RUNCMD(OPCSDEFS).

 These are commands not built into OPCS, but rather added on during
 loading of the OPCSDEFS.OPC file, and assigned to scripts.

 TYPICAL CUSTOM COMMANDS

 load - Unseat projectors for loading
 lineup - Seat camera for lineups
 unlock - Unlock motors for manual adjustment
 ycm - Y/C/M shooting

 For more, see the scripts in the RUN directory, e.g. .\RUN\LOAD.RUN
 For example, the 'ycm' custom command is implemented as three files:

 ycm.run -- YCM 'runcmd' script
 ycm.hlp -- YCM script's help file (describes command, args)
 ycm.vrp -- YCM script's velrep file (velocities for YCM shooting)

 There are example versions of these commands that come as part
 of the software, but you can define your own too. The RUNCMD
 definitions are in the opcsdefs.opc file (commented out), and
 the associated '.run' files are in the work\run* directory.

 Simply edit the opcsdefs.opc file, and uncomment or create the
 commands you need, and modify the .run scripts to suit your needs.

 Most of the 'example' commands come with man pages and/or .hlp
 files. Please refer to those for more information.

 Custom commands that have man pages are:
 LOAD(OPCS) - unseat projectors for film loading
 LINEUP(OPCS) - seat the camera for lineups
 UNLOCK(OPCS) - unlock motors for manual adjustment

 SEE ALSO
 RUNCMD(OPCSDEFS) - define your own OPCS command as a RUN script
 DOSCMD(OPCSDEFS) - define DOS commands that don’t need the ‘!’ prefix
 HOME(DOCS) - external command to home the motors

 ORIGIN
 Gregory Ercolano, Venice California 04/12/98

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

39

do(OPCS)

DO(OPCS) Optical Printer Control System DO(OPCS)

 NAME
 do - repeat commands

 USAGE
 do [count] [commands]
 do until (expr) [commands]

 EXAMPLES
 do 12 rep 15 pro -5
 ^These commands repeat 12 times from left to right.

 do until (cam>=45) rep 15 pro -5
 ^Loop until camera counter reaches 45 or greater.

 DESCRIPTION
 Repeats commands. Commands that follow the DO command up to the end of
 line are repeatedly executed the number of times specified by [count].

 If 'DO UNTIL (expr)' is used, looping continues until (expr) is true.

 DO commands can be nested within a line. That is to say, 2 DO commands
 can appear on the same line:

 do 4 seek 10 do 8 rep 1 pro -1
 | |
 | These loop 32 times; the 'DO 4' loop
 | executes the 'DO 8' loop 4 times.
 |
 These loop 4 times

 In the case of do until (expr), usually (expr) is a conditional
 expression that compares one of the counters to a value, e.g.:

 do until (cam=12) .. # until cam counter is 12
 do until (cam>=12) .. # until cam counter greater than or equal to 12
 do until (pro>200) .. # until main projector counter greater than 200

 EXAMPLES
 Run three 5 frame cycles of a moving projector image:

 rat 1 1 do 3 rep 5 pro -5
 ^ These repeat 3 times from left to right.

 Run twelve 4x cross dissolves on every 8th projector image, effectively
 'weaving' still frames of a moving projector image:

 do 12 dxo 4 cam 4 cam -4 pro 8 dxi 4 cam 4
 ^ These repeat 12 times

 Run a script file 7 times:

 do 7 run smallfile.run
 ^ This script is executed 7 times

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

40

 Shoot a 12x wedge, allowing camera operator to manually load
 ND filters into the projector's filter holder for each frame:

 do 12 pse cam 1

 ORIGIN
 Gregory Ercolano, Los Feliz California 12/16/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

41

dxi/dxo(OPCS)

DXI(OPCS), DXO(OPCS) Optical Printer Control System DXI(OPCS), DXO(OPCS)

 NAME
 dxi/dxo - set up an automated dissolve in/out

 USAGE
 dxi [-x] frames # set up a 'dissolve in'
 dxo [-x] frames # set up a 'dissolve out'

 The -x option overrides the error message that warns you about doing a
 dissolve when the shutter isn't fully open/closed. This allows you to
 do dissolves from any fader position.

 EXAMPLES
 dxi 12 # Set up a 12 frame 'dissolve in'
 dxi -x 12 # 12x dissolve, regardless of current fader position

 DESCRIPTION
 Sets up a dissolve. Once set, whenever the camera is told to expose
 frames (with CAM(OPCS), REP(OPCS), etc), the fader will automatically
 move to the proper position before exposing each frame.

 Dissolves can operate on either still or moving images, depending on
 the command used for exposing film;

 1) Setup and shoot a 12x "dissolve in" on a held projector image:

 dxi 12 cam 12
 | |
 | Shoot 12x dissolve in on frozen projector frame.
 |
 Set up 12x dx in

 2) Setup and shoot 12x "dissolve in" as a straight print:

 rat 1 1 dxi 12 rep 12
 | | |
 | | Shoot 12x dissolve in on moving projector image
 | |
 | Set up 12x dissolve in
 |
 Set up a straight print for the 'rep' command

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

42

 3) Setup and shoot a 24x 'lap dissolve' between two moving projector
 images. (Assumes 'rat 1 1' in effect for straight print):

 dxo 24 rep 24 seek >5500 -24 dxi 24 rep 24
 | | | | |
 | | | | Shoot 24x dissolve in
 | | | | as straight print
 | | | |
 | | | Setup 24x dissolve in
 | | |
 | | Backwind camera -24x, projector seeks x5500
 | |
 | Shoot 24x dissolve out (straight print)
 |
 Set up 24x dissolve out

 Commands can be 'all on one line' as shown above, or separate:

 dxo 24 # Setup 24x dx out
 rep 24 # Shoot 24x dx out as straight print
 seek >5500 -24 # Backwind cam -24x, pro goes to frame #5500
 dxi 24 # Setup 24x dx in
 rep 24 # Shoot 24x dx in as straight print

 Note: seek >5500 -24 is effectively the same as cam -24 pro >5500
 though the latter may be slower to execute.

 4) Shoot (12) 4 frame dissolves between every 8th projector image:

 do 12 dxo 4 cam 4 seek -4 pro 8 dxi 4 cam 4

 These commands repeat 12 times from left to right.

 ..which 'weaves' still frames from a slow-motion moving projector image.

 NOTES
 Dissolves remain in effect until all frames of the dissolve have shot.
 Any of the following commands will cancel an in-progress dissolve:

 opn, cls, shu, dxi 0, dxo 0.

 A status message near the fader's counter shows the remaining frames
 left for an in-progress dissolve.

 If the -x flag is NOT supplied, the fader:

 o Must be fully OPEN before executing DXO
 o Must be fully CLOSED before executing DXI

 ..otherwise an error is shown. The only exception is if the -x flag
 is supplied, preventing these warnings, shooting the new dissolve
 based on the fader's *current* position.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

43

 Below are common errors:

 dxi 12 cam 11 dxo 12 cam 12
 ^bombs here: only 11x into a 12x DXI.
 opn dxi 12 cam 12
 ^bombs here: fader is already open

 It's hard to see such errors in large '.run' scripts, so test
 with 'motors off' to find such problems quickly.

 DISSOLVE-SPECIFIC INSTALLATION NOTES
 When setting up a new system, shoot extensive cross-dissolve tests
 to make sure the INTERP(OPCSDEFS) values for your fader are correct.

 If interp values aren't accurate or there's mechanical slop in the
 shutter (see SLOP(OPCSDEFS)), you will see bumps in exposure. Test
 with different length lap-dissolves, and project on a large screen.
 Fine tuning SLOP and INTERP are essential for accurate dissolves.

 SEE ALSO
 OPCS Commands
 CAM(OPCS) - shoot camera (fades/dissolves too)
 OPN(OPCS), CLS(OPCS) - open/close fader shutter
 SHU(OPCS) - move fader to an absolute position in degrees
 DXI(OPCS), DXO(OPCS) - set up dissolve in/out
 FDI(OPCS), FDO(OPCS) - set up fade in/out

 OPCSDEFS Commands
 FLOG(OPCSDEFS) - set Fader LOGarithmic curve for custom fades
 FRANGE(OPCSDEFS) - set fade/dx's degrees range (for Hicon film stocks)
 INTERP(OPCSDEFS) - set interpolation positions (fader, focus, etc)
 SLOP(OPCSDEFS) - correct for slop in a motor (fader, focus, etc)

 General
 MATH(DOCS) - math expressions (for use in frame specifications)
 SYNTAX(DOCS) - online calculator and OPCS math expression syntax

 ORIGIN
 Gregory Ercolano, Los Feliz California 11/29/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

44

fdi/fdo(OPCS)

FDI(OPCS), FDO(OPCS) Optical Printer Control System FDI(OPCS), FDO(OPCS)

 NAME
 fdi/fdo - set up an automated fade in/out

 USAGE
 fdi [-x] frames # set up a 'fade in'
 fdo [-x] frames # set up a 'fade out'

 The -x option overrides the error message that warns you about doing a
 fade when the shutter isn't fully open/closed. This allows you to
 do fades from any fader position.

 EXAMPLES
 fdi 24 # Set up a 24 frame fade in
 fdi -x 24 # 24x fade, regardless of current fader position

 DESCRIPTION
 Sets up a fade. Once set, whenever the camera is told to expose frames
 (with CAM(OPCS), REP(OPCS), etc), the fader will automatically move
 to the proper position before exposing each frame.

 Fades are based on a logarithmic curve that can be customized
 with FLOG(OPCSDEFS).

 Fades can operate on either still or moving images, depending on the
 command used for exposing film;

 1) fdi 12 cam 12 # fade in on held image
 2) rat 1 1 fdi 12 rep 12 # fade in on moving image
 3) rat 1 2 fdi 12 rep 6 # fade in with step print

 #1 sets up and shoots a 12 frame fade-in on a still projector image.
 #2 sets up and shoots a 12 frame fade-in on a moving projector image.
 #3 sets up and shoots a 12 frame fade-out on a moving projector image
 on twos (step print).

 Fades remain in effect until all frames of the fade have been shot.
 A fade can be canceled midway using any one of these commands:

 opn, cls, shu, fdi 0, fdo 0.

 The following effectively shoots the exact same thing:

 > fdi 12 cam 12
 > fdi 12 cam 6 cam 6

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

45

 NOTES
 > fdi 0, fdo 0 or a SHU(OPCS) command with any value
 will cancel any pending fade or dissolve.

 > A status message near the fader's counter shows how many frames are
 left to go for the fade.

 > Normally, the fader must be:

 o OPEN before executing FDO
 o CLOSED before executing FDI

 ..otherwise an error is shown. The only exception is if the
 -x flag is supplied, preventing these warnings, shooting the
 new fade based on the fader's *current* position.

 Below are some common errors:

 fdi 12 cam 11 fdo 12 cam 12
 ^bombs here: only 11x into a 12x FDI.

 opn fdi 12 cam 12
 ^bombs here: fader is already open

 It's hard to see such errors in large '.run' scripts, so it's
 advised to test scripts with 'motors off' to find such problems
 quickly, without wasting film or waiting for motors to move.

 SEE ALSO
 OPCS Commands
 CAM(OPCS) - shoot camera (fades/dissolves too)
 OPN(OPCS), CLS(OPCS) - open/close fader shutter
 SHU(OPCS) - move fader to an absolute position in degrees
 DXI(OPCS), DXO(OPCS) - set up dissolve in/out
 FDI(OPCS), FDO(OPCS) - set up fade in/out

 OPCSDEFS Commands
 FLOG(OPCSDEFS) - set Fader LOGarithmic curve for custom fades
 FRANGE(OPCSDEFS) - set fade/dx's degrees range (for Hicon film stocks)
 INTERP(OPCSDEFS) - set interpolation positions (fader, focus, etc)
 SLOP(OPCSDEFS) - correct for slop in a motor (fader, focus, etc)

 General
 MATH(DOCS) - math expressions (for use in frame specifications)
 SYNTAX(DOCS) - online calculator and OPCS math expression syntax

 ORIGIN
 Gregory Ercolano, Los Feliz California 11/29/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

46

feed(OPCS)

FEED(OPCS) Optical Printer Control System FEED(OPCS)

 NAME
 feed - feed motion control moves to motors every camera frame

 USAGE
 feed [chans] [file] # start feeding motors from file
 feed off # disable feeding

 [chans] declares specific channels to be used from the
 file, and should consist of combined channel letters (ie. 'efgh'),
 Asterisk (*) can be used to specify ALL channels.

 [file] specifies the name of the file containing the positions
 for the channels.

 [off] tells FEED to cancel any FEEDs in progress.

 EXAMPLE
 feed efgh zoomfile.pos # Specify motion control file to
 # control the e,f,g,h channels.

 feed off # cancel any motion control files
 # that may currently be in progress.

 feed * zoomfile.pos # all channels from file
 # (note: abc chans are ignored)

 DESCRIPTION
 FEED sets up per-frame motion control for situations such as zooms
 and pans to be automatically controlled by an ASCII file containing
 columns of numbers that represent absolute positions.

 When FEED has been given a file, any command that shoots a frame on
 the camera (such as cam or rep) will first read the next positions
 from the file, send the motors to their new positions, and then shoot
 the frame. This will continue until the end of the FEED file is
 reached, at which point the FEED file is automatically turned off.

 The file will be read one line at a time for each frame exposed.
 When the end of the file is reached, the feed command is disabled,
 and the file is closed.

 FEED files can be disabled prematurely by specifying feed off,
 canceling any FEED that is in effect, closing the file.

 FEED is functionally similar to the FDI/FDO commands in that FEED
 does not actually shoot any frames, but sets things up so that when
 commands such as cam or rep are used, the motors move to the positions
 JUST BEFORE the camera shoots each frame.

 POSITION FILES (xxx.pos)
 Position files can be created in a text editor by typing in the values
 manually (see 'FEED FILE FORMAT' below), or by using external programs
 to generate the numbers (e.g. 'ease.exe' for generating ease-in/outs)

 The file contains white space delimited columns of numbers.
 Each line in the file corresponds to a frame on the camera.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

47

 Each white-space delimited column corresponds to a motor axis
 or 'channel'; the first column being channel 'a', the second 'b',
 and so on.

 Lines that start with '#' are ignored, so that comments can be
 included within the file for readability.

 Example:

 # zoom.pos file
 # a b c d e f g h i ..
 0 0 0 0 0 0 505 100 0 <-- frame 1
 0 0 0 0 112 0 505 201 0 <-- frame 2
 0 0 0 0 340 0 505 302 0 <-- frame 3
 0 0 0 0 652 0 505 403 0 <-- frame 4
 0 0 0 0 1034 0 505 504 0 <-- frame 5
 0 0 0 0 1480 0 505 605 0 <-- frame 6
 0 0 0 0 1982 0 505 706 0 <-- frame 7

 In this case the 'e', 'g' and 'h' channels have moves programmed
 into them; 'e' has a ramp, 'g' has a holding position of '505',
 and 'h' has a linear ramp. The rest of the channels are zero.

 So to use just the 'e' channel from this file, the operator would use:

 feed e zoom.pos rep 20

 ..this will set up and shoot the motion control move; each time
 the camera exposes a frame, the 'e' channel will move to the next
 position specified in the file under the 'e' column.

 For more info on the position file format, see 'POSITION FILE FORMAT'
 below.

 SPECIAL CHANNELS
 Currently, FEED ignores channels ABC, even if specified.
 These correspond to the Aerial, Main, and Camera respectively,
 and are only controlled by shooting commands (PRO2, PRO, CAM, etc)

 FEED is only for the positioning non-shutter motors.

 Like the GO(OPCS) command, if you have zoom and follow focus channels
 configured on your system, FEED will do auto-follow focus ONLY if the
 focus channel is specified to FEED. The file need not contain any
 relevant values for the focus channel, but the channel must be
 specified in order to do a follow focus zoom.

 Typically channels are assigned this way:

 a - aerial projector (if any)
 b - main projector
 c - camera
 d - fader (if any)
 e - zoom, usually the lens
 f - focus, usually the camera body
 g - filter wheel (if any)

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

48

 Only the a/b/c/d channels must be assigned as shown; if there's
 a fader, it must be on the 'd' channel, the camera must be on 'c'.

 The other channels (e/f/g/h..) can be assigned to any axis you
 like; the above are just recommendations.

 FOLLOW FOCUS
 In order for follow focus to work, the follow focus channel (f)
 must be specified to FEED. The values in the file for that
 channel will be ignored if INTERP is configured for followfocus,
 and can therefore be all zeroes.

 The INTERP command will control the motor movement for this
 channel, automatically slaving the position of the focus to
 the positions on the zoom (e), based on the interpolations.

 If the focus channel is not specified to FEED, zooms will move
 without moving the focus channel. In the following example,
 'e' is the zoom, and 'f' is focus, with the 'f' channel slaved
 to the zoom with an INTERP command (not shown):

 feed ef zoom.pos # DO follow focus during zooms
 feed e zoom.pos # DON’T follow focus during zooms

 If you want to specify your OWN focus positions in the FEED file,
 simply disable the INTERP(OPCSDEFS) command for the focus channel:

 ! echo interp f - 0 0 0 > foo.foo ! ldefs foo.foo

 This disables interpolation slaving for the focus channel, so that
 it can be run like a normal channel, using the values from the file
 for the positions.

 POSITION FILE FORMAT
 Position files are simple ascii files. They can be created with
 text editors, custom programs, or with software that comes with
 OPCS to create position files (e.g. ease.exe, gr.exe, etc).

 o Lines whose first character starts with '#' are ignored.
 These are comment lines, and are not parsed by FEED(OPCS).

 o Each line in the file is considered a 'frame'.

 o Each line should have no more than 256 characters.

 o Each number on the line represents an ABSOLUTE POSITION for
 that channel's motor. There is no way to represent RELATIVE
 positioning in a FEED file currently.

 o The channels are always (ABCDEFGH..) respectively from left to
 right. Even though the software always ignores values for the
 'abc' channels, some value (usually zeroes) must be there.

 o Numbers are normally ASCII signed integers, although can
 be floating point values for channels such as the fader,
 to specify floating point 'degrees'.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

49

 Here is a sample file that has a 5 frame zoom programmed into
 the 'e' channel:

 # TEST.POS
 # A B C D E F G H
 0 0 0 0 10 0 0 0
 0 0 0 0 25 0 0 0
 0 0 0 0 45 0 0 0
 0 0 0 0 60 0 0 0
 0 0 0 0 65 0 0 0

 Although values must be specified in the A,B and C columns, they are
 automatically ignored by the OPCS software to avoid screwing up the
 camera and projector positions which are better controlled by other
 commands such as CAM, PRO and REP.

 To use the above file:

 feed ef test.pos # Start 'feed'ing numbers from test.pos
 cam 5 # Shoot all 5 frames in the file

 Note that you can use any shooting command, including RAT and REP
 to shoot the frames. The rule to remember is new positions are fed to
 the motors BEFORE the camera ever shoots a frame.

 SEE ALSO
 GO(OPCS) - Move motors some distance or to new positions
 INTERP(OPCSDEFS) - configure channel position interpolations

 ORIGIN
 Gregory Ercolano, Los Feliz California 01/10/91

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

50

go(OPCS)

GO(OPCS) Optical Printer Control System GO(OPCS)

NAME
 go - Move motors in steps or to absolute step positions

USAGE
 go [chans] [distance[,distance,...]]
 go [chans] [>position[,>position,...]]

EXAMPLES
 go d -10 # channel d goes -10 steps from where it is
 go efgh >0 # channels EFGH go TO position 0
 go efg 120,130,>0 # e goes 120, f goes 130, and g goes TO 0
 go ef 120 # ef go 120 steps from where they are

DESCRIPTION
 Mostly for moving 'linear' motors such as zoom, follow-focus, etc.
 Lets you move more than one channel at a time, each channel having
 its own relative steps or absolute position, or all sharing one.

CAVEATS
 1. When using GO to move shutter channels (cam, pro..), frame counters
 will retain their frame counts, since GO moves steps, not frames.

 2. Using GO on channels with interpolations are handled specially:

 2a. When channels are slaved with INTERP, e.g. focus (f) slaved to zoom
 (e), specify BOTH channels to GO so they move together, one slaved to
 the other. Otherwise they will be moved separately. e.g.

 go ef 12000 # 'e' moves 12000 steps, and slave 'f' moves
 # to maintain focus.

 go e 12000 # 'e' moves 12000 steps. (f does not move)

 go f 12000 # 'f' moves +12000 steps (e does not move)

 go f >-30000 # 'f' moves to -30000 (e does not move)

 2b. Alternatively, with a SINGLE CHANNEL interpolation (such as fader),
 relative positions will move the channel in STEPS. Only when absolute
 positions are specified (e.g. >170) will interpolations be used, e.g.:

 go d 10 #'d' moves 10 STEPS. Relative positioning
 # of the fader always works in STEPS.

 go d >170 #'d' moves to 170 DEGREES. Absolute positioning
 # of the fader always works in DEGREES.

SEE ALSO
 SHOW(OPCS) - show current positions for all motors
 JOG(OPCS) - interactively jog a positioning motor
 INTERP(OPCSDEFS) - set interpolation positions (fader, focus, etc)
 MATH(DOCS) - math expressions
 SYNTAX(OPCS) - Online calculator and OPCS math expression syntax

ORIGIN
 Gregory Ercolano, Los Feliz California 09/04/90

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

51

jog(OPCS)

JOG(OPCS) Optical Printer Control System JOG(OPCS)

 NAME
 jog - jog motors interactively

 USAGE
 jog # jog any channels
 jog [channels] # jog only specific channels

 EXAMPLES

 jog f # jog the 'f' channel with the numeric keypad
 jog # jog ANY channels with numeric keypad

 DESCRIPTION
 This command brings up a menu oriented display where single key
 presses can run the printer.

 Keys on the numeric keypad are used for picking different motor
 channels and jogging the motors forward or reverse at 3 different
 speeds; Step, Crawl, and Slew:

 _________ _________ _________ _________
 | Num | | / | | * | | - |
 | Lock | | | | | | Prev |
 | | | | | | | Chan |
 |_________| |_________| |_________| |_________|
 _________ _________ _________ _________
 | 7 | | 8 | | 9 | | |
 | Fwd | | Fwd | | Fwd | | Next |
 | Step | | Crawl| | Slew | | Chan |
 |_________| |_________| |_________| | |
 _________ _________ _________ | + |
 | 4 | | 5 | | 6 | | |
 | | | | | | | |
 | | | | | | | |
 |_________| |_________| |_________| |_________|
 _________ _________ _________ _________
 | 1 | | 2 | | 3 | | |
 | Rev | | Rev | | Rev | | Save |
 | Step | | Crawl| | Slew | | Keys |
 |_________| |_________| |_________| | |
 _____________________ _________ | Enter |
 | 0 | | . | | |
 | | | | | |
 | Ins | | Del | | |
 |_____________________| |_________| |_________|

 You can redefine the number of pulses that STEP and CRAWL move per
 keypress. See JOGSTEP(OPCSDEFS).

 Also, some of the KEY command keys are active as well. The function
 and number keys along the top of the keyboard allow the operator to
 run frames on the projectors and camera, as well as fade/dissolves,
 reset counters, rat, rep, etc.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

52

 AERIAL (PRO2) MAIN (PRO1) CAMERA (CAM)
 _____________________ _____________________ _____________________
 / \ / \ / \
 ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___
 |F1 | |F2 | |F3 | |F4 | |F5 | |F6 | |F7 | |F8 | |F9 | |F10| |F11| |F12|
 |___| |___| |___| |___| |___| |___| |___| |___| |___| |___| |___| |___|
 Fwd Rev Fwd Rev Fwd Rev Fwd Rev Fwd Rev Fwd Rev
 Slew Slew +1 -1 Slew Slew +1 -1 Slew Slew +1 -1

 PRINTING COUNTERS FADE DISSOLVE OPN/CLS
 _______________ _______________ _______ _______ _________
 / \ / \ / \ / \ / \
 ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___
 | 1 | | 2 | | 3 | | 4 | | 5 | | 6 | | 7 | | 8 | | 9 | | 0 | | - | | + |
 |___| |___| |___| |___| |___| |___| |___| |___| |___| |___| |___| |___|
 REP REP RAT RES RES RES FDI FDO DXI DXO CLS OPN
 Fwd Rev Set pro2 pro1 cam Set Set Set Set Fader Fader

 Key Description
 _ --- ---
 | 1 Reverse in vernier mode. Hold to repeat.
 | 2 Reverse in crawl mode. Hold to repeat.
 | 3 Reverse in slew mode. Runs until key is released.
 | 4 -
 Numeric | 5 -
 Key Pad -| 6 -
 | 7 Forward in vernier mode. Hold to repeat.
 | 8 Forward in crawl mode. Hold to repeat.
 | 9 Forward in slew mode. Runs until key is released.
 | + Select next channel to jog (i.e. 'a' becomes 'b')
 |_ - Select previous channel to jog (i.e. 'b' becomes 'a')
 ALT-A Selects the 'a' channel
 ALT-B Selects the 'b' channel, etc..
 V Toggles 'Slave / No Slave' mode. [See COMMENTS]
 Z Sends current channel to '0' position
 R Reset counters [See COMMENTS]
 U Unlocks the motors (runs 'unlock' command)
 ENTER Saves current positions as a keyframe.
 L Load keyframe positions. [See COMMENTS]
 E Edit the keyframe list. See below 'KEYFRAME EDITOR'
 S Saves keyframes created with ENTER key, and E)ditor
 C Clears all keyframes so you can start again.

 COMMENTS

 V - If slaving is off, you can jog the zoom without moving
 the focus. With slaving on, moving zoom also moves focus.

 R - In 'reset' mode, use Up/Dn arrows to select the channel
 to reset, and enter the new numeric value. Use ESC or Q
 to return to normal jog mode.

 L - Loads the keyframe positions so they can be added to,
 edited, etc.

 NOTES
 If you are jogging positioning motors (not frame counter motors),
 and find that releasing the key does not immediately stop the motor,
 check the PPR(OPCSDEFS) setting for that channel. Normally
 positioning channels should have a low value like 10 for PPR.

 When jogging the ZOOM, follow focus is not immediate when slewing.
 During a move, only the zoom will move until the key is released.
 At that point the focus will move to the appropriate focus position.
 This 'delay' is noticeable with especially with the SLEW keys (3&9).

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

53

 GOTCHYAS
 When using JOG(OPCS) inching keys on a channels like the camera and
 projector, the counters WILL NOT CHANGE, so as not to lose your frame
 counts for that channel.

 BUGS
 Currently the 0-9 keys (non-numeric keypad number keys) are not active
 during 'jog', although in the future they may echo the same functions
 the KEY command supports for those keys.

THE KEYFRAME EDITOR

 The keyframe editor is a simple tool to help correct mistakes made
 while finding keyframes. It is a sub-menu of the JOG command, and
 is accessed as 'E' from the JOG menu.

 UP/DOWN Move the cursor to different keyframes. In the
 keyframe editor, the position list at the bottom
 right of the screen shows the positions FOR THE
 KEYFRAME the cursor is currently on.

 PgUp/PgDn If you have many keyframes saved, this will
 scroll through them a page at a time.

 DELETE Deletes the keyframe positions the cursor is currently
 sitting on, and all positions below it are
 'moved up one' to replace the deleted keyframe.

 INSERT This inserts the current motor positions as a new
 keyframe where the cursor is sitting, and all the
 other key positions below it will be shifted down one.

 G Sends all motors to selected keyframe's positions.

 ESC Returns to the JOG mode.

 COMMON KEYFRAME EDITING

 DELETING ACCIDENTALLY SAVED KEYFRAME POSITIONS
 --
 If you save the same keyframe twice, you can correct the problem
 by entering the editor, find the extra position with the UP/DOWN
 cursor keys, and hit the DELETE key on the extra keyframe. Hit ESC
 to continue finding newer positions.

 REPLACING BAD KEYFRAME POSITIONS WITH NEWER ONES
 --
 Assuming you saved a keyframe position, and later want to replace
 it with newly found positions, enter the editor with the motors at
 the newer positions. Find the old keyframe with the cursor and hit
 the DELETE key to remove it. Now hit the INSERT key to insert the
 current positions of the motors where the old positions were.

 SEE ALSO
 GO(OPCS) - Move motors some distance or to new positions
 KEY(OPCS) - shoot camera/projector(s) frames by button control
 KEYFUNC(OPCSDEFS) - Lets you define which keys control motors
 JOGSTEP(OPCSDEFS) - set #steps for Pulse and Crawl modes

 ORIGIN
 Gregory Ercolano, Los Feliz California 12/15/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

54

key(OPCS)

KEY(OPCS) Optical Printer Control System KEY(OPCS)

 NAME
 key - shoot camera/projector frames by button control

 USAGE
 key [no arguments]

 DESCRIPTION
 KEY(OPCS) gives the operator button controls to run camera, projector,
 and fader for simple shooting. These are the defaults defined by the
 KEYFUNC(OPCSDEFS) command in the OPCSDEFS.OPC file:

 AERIAL (PRO2) MAIN (PRO1) CAMERA (CAM)
 _____________________ _____________________ _____________________
 / \ / \ / \
 ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___
 |F1 | |F2 | |F3 | |F4 | |F5 | |F6 | |F7 | |F8 | |F9 | |F10| |F11| |F12|
 |___| |___| |___| |___| |___| |___| |___| |___| |___| |___| |___| |___|
 Fwd Rev Fwd Rev Fwd Rev Fwd Rev Fwd Rev Fwd Rev
 Slew Slew +1 -1 Slew Slew +1 -1 Slew Slew +1 -1

 PRINTING COUNTERS FADE DISSOLVE OPN/CLS
 _______________ _______________ _______ _______ _________
 / \ / \ / \ / \ / \
 ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___
 | 1 | | 2 | | 3 | | 4 | | 5 | | 6 | | 7 | | 8 | | 9 | | 0 | | - | | + |
 |___| |___| |___| |___| |___| |___| |___| |___| |___| |___| |___| |___|
 REP REP RAT RES RES RES FDI FDO DXI DXO CLS OPN
 Fwd Rev Set pro2 pro1 cam Set Set Set Set Fader Fader

 ________________ _______ _______ ______
 |Backspace | |Ins | |Home | |PgUp |
 | Seek | | x | | x | | x |
 |________________| |_______| |_______| |______|
 _______ _______ ______
 |Del | |End | |PgDn |
 | x | | x | | x |
 |_______| |_______| |______|

 'x' indicates no default is configured, but can be customized
 using 'keydef' commands in the OPCSDEFS.OPC file

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

55

 For a non-diagrammatic description:
 _
 F1 = projector2 continuous run fwd |
 F2 = projector2 continuous run rev | AERIAL PROJECTOR SHOOT
 F3 = projector2 fwd single frame | (PRO2)
 F4 = projector2 rev single frame _|
 _
 F5 = projector1 continuous run fwd |
 F6 = projector1 continuous run rev | MAIN PROJECTOR SHOOT
 F7 = projector1 fwd single frame | (PRO1)
 F8 = projector1 rev single frame _|
 _
 F9 = camera continuous run fwd |
 F10 = camera continuous run rev | CAMERA SHOOT
 F11 = camera fwd single frame |
 F12 = camera rev single frame _|
 _
 1 = run positive ratio shoot |
 2 = run negative ratio shoot | RATIOS
 3 = set ratio to new values _|
 _
 4 = set projector2 counter |
 5 = set projector1 counter | COUNTERS
 6 = set camera counter _|
 _
 7 = set fade in | FADES
 8 = set fade out _|
 _
 9 = set dissolve in | DISSOLVES
 0 = set dissolve out _|
 _
 - = close fader | OPEN/CLS
 = = open fader _|
 _
 BACKSPACE = seek pro/cam _| CAPPED SEEK
 ESC = quit to OPCS command line

 It is advised you add a keyboard template with the above values,
 or use a relegendable keypad like the "XKEYS Desktop PS/2 Keypad".

 On most IBM keyboards, function keys (F1 - F12) are arranged across
 the top of the keyboard in 3 groups, 4 keys per group:

 Axis F-Key
 ---------- ---------
 Aerial Pro F1 - F4
 Main Pro F5 - F8
 Camera F9 - F12

 In each group, the first two keys shoot fwd/rev as long as you hold
 the key down. The others shoot single frame forward/reverse.

 Use KEYFUNC(OPCSDEFS) to define external port bits so your own custom
 hardware buttons can control the motors. You can also tie your own
 custom commands and run scripts to buttons and keys.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

56

 EXAMPLE. To program the TAB key to invoke a DOS 'dir /p' command, put
 the following in your OPCSDEFS.OPC file:

 keyfunc -add "! dir /p" 0060 ff 0f 0060 80 80
 ---------- ---------- ----------
 | | |
 | | Key release
 | |
 | Tab down keycode "0f"
 OPCS command to run

 Then restart opcs and run the 'key' command. Hitting TAB will show
 a directory listing, then you will be prompted to hit a key, then
 you're returned to the key mode.

 SEE ALSO
 JOG(OPCS) - jog to new positions (in pulses) interactively
 QUICKREF(DOCS) - See PUSH BUTTON SHOOTING for examples
 KEYFUNC(OPCSDEFS) - Lets you define which keys control motors
 MOTORS(OPCS) - Disable motor hardware, simulates shutter runs

 ORIGIN
 Gregory Ercolano, Los Feliz California 02/15/91

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

57

ldefs(OPCS)

LDEFS(OPCS) Optical Printer Control System LDEFS(OPCS)

 NAME
 ldefs - load OPCS definitions file

 USAGE
 ldefs filename.opc
 ldefs -c <command and args>

 EXAMPLES
 ldefs hicon.opc # load OPCSDEFS cmds from hicon.opc
 ldefs -c bigcounters nixie # use nixie counters
 ldefs -c ramp a 10 180 10 150 # redefine ramps for a chan

 DESCRIPTION
 This command allows the operator to load other definitions files.
 Users can make copies of the OPCSDEFS.OPC file, and make changes
 to the copy, then load this new copy with the LDEFS command to put
 the changes into effect. This avoids modification of the original
 OPCSDEFS.OPC file.

 One can also run single line OPCSDEFS commands with the '-c' flag,
 which interprets all arguments to the end of the line or a '!'
 character (see BANG(OPCS)) as OPCSDEFS commands. Example:

 ldefs -c bigcounters nixie
 ldefs -c name a Aerial name b Main name c Cam ! echo OK

 OPCSDEFS files contain special commands that setup the OPCS system's
 internal parameters. Use 'man -k OPCSDEFS:' for a listing of all the
 OPCSDEFS commands (such as the 'opcsdefs.opc' loaded on startup),
 or for any other files/commands used with LDEFS(OPCS).

 HISTORY
 The '-c' flag was added in OPCS version K2.00 to allow immediate
 execution of defs commands. In older releases to do the same, you
 had to first write commands into a temp file (e.g., using ECHO),
 then load that, e.g.:

 ! echo bigcounters off > tmpfile
 ldefs tmpfile ! del tmpfile

 This trick is no longer needed in K2.xx, as you can use just
 'ldefs -c bigcounters off' for the same effect.

 TRICKS WITH DEFS FILES
 People familiar with the IBM's operating system will be familiar with
 these capabilities...

 First, note that in K2.00 (and up), 'ldefs -c' can be used to run
 OPCSDEFS commands inside OPCS, e.g.:

 ldefs -c bigcounters on # big counters

 Which makes many of the below techniques unnecessary extra work.
 However, in the older releases (K1.xx) these are unavailable,
 so the below techniques must be used.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

58

 As with all DEFS file commands, you can execute motor definition
 commands from within the OPCS software by creating a small file,
 and the loading commands from it via LDEFS(OPCS)... In the following
 example, we switch back and forth between large and small counters:

 ! echo bigcounters on > tmpfile ! ldefs tmpfile # big counters
 ! echo bigcounters off > tmpfile ! ldefs tmpfile # small counters

 This 'trick' can be used with any OPCSDEFS commands, and uses the
 operating system's ECHO command and 'reroute output' symbol (>) to
 create the file FOO, which is then loaded as a file with the LDEFS
 command. This technique CAN be used within a script or when entering
 commands manually.

 You can create multiline files from within a script as shown in this
 example using MSDOS's > and >> (append) symbols:

 ! echo flog 2.0 > tmpfile
 ! echo logcounters yes >> tmpfile
 ldefs tmpfile

 This technique can be programmed into run scripts, so defs file
 information can be changed on the fly.

 Here is another way to enter DEFS commands directly to the LDEFS
 command from within the OPCS software:

 ldefs con # Load the special MSDOS file CON...
 logcounters no # which is really the keyboard (console)
 ppr a 400 # reading these commands from keyboard
 ^Z # CTRL-Z and RETURN ends this mode..
 cam 12 # ..back to OPCS commands

 The 'ldefs con' technique works well for interactive typing, but
 cannot be programmed into a script, since it always reads from
 the keyboard. Use the 'echo' technique listed in the previous example
 for programming DEFS commands into a running script.

 These techniques are actually standard ways of using the DOS operating
 system, and are not particular to just the OPCS software. They can be
 used by any program running under MSDOS that properly supports the
 operating system.

 Users not familiar with these techniques should learn them only if they
 think they might need them. At very least, operators should be aware
 of these capabilities.

 SEE ALSO
 ECHO(OPCSDEFS) - disable echoing of defs commands
 OPCSCMD(OPCS) - run OPCS commands from within OPCSDEFS command mode
 man -k OPCSDEFS: - list OPCSDEFS commands with one line descriptions
 man -k OPCS: - list OPCS commands with one line descriptions

 ORIGIN
 Gregory Ercolano, Los Feliz California 11/29/89

l

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

59

ineup(OPCS)

LINEUP(OPCS) Optical Printer Control System LINEUP(OPCS)

 NAME
 lineup - (CUSTOM) seat the camera for lineups

 USAGE
 lineup [no arguments]

 DESCRIPTION
 Seats the camera so a lineup can be done.

 This command is actually a script defined with a RUNCMD(OPCSDEFS)
 command, and is normally customized by your local site engineer.

 This command normally does the following operations:

 > Seat the camera

 > Wait for user to hit a key

 > Unseat the camera

 INSTALLATION NOTES
 An example implementation of the lineup command might be done as
 follows. Add the following command to the 'runcmd' section of your
 opcsdefs.opc file:

 runcmd lineup lineup.run 0

 ..then create a file called 'lineup.run' which contains the following
 text:

 @ # Seat camera. 'go' won't affect camera counters.
 @ go c 1000
 ##### CAMERA SEATED FOR LINEUP ###
 @ pse -noabort
 ##### CAMERA BACK TO NORMAL ###
 @ # Unseat camera by moving back 1000 pulses.
 @ go c -1000

 A slightly more colorful version, assuming you know how to enter ANSI
 and control characters into your text editor:

 @ go c 1000
 #<BS><ESC>[1m*** <ESC>[5mCAMERA SEATED FOR LINEUP<ESC>[0m<ESC>[1m ***<ESC>[0m
 @ pse -noabort
 #<BS><ESC>[K<ESC>[A<ESC>[A<ESC>[K
 @ go c -1000

 ORIGIN
 Gregory Ercolano, Los Feliz California 10/12/90

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

60

load(OPCS)

LOAD(OPCS) Optical Printer Control System LOAD(OPCS)

 NAME
 load - (CUSTOM) unseat projectors for film loading

 USAGE
 load [no arguments]

 DESCRIPTION
 Unseats the projector shuttles for easy loading.

 This command is actually a script defined with a RUNCMD(OPCSDEFS)
 command, and is normally customized by your local site engineer.

 This command normally does the following operations:

 > Disables the tension motors for the camera and projector

 > Move projector(s) to unseated position with GO(OPCS)

 > Pause to allow user to load the film

 > Return projector(s) to seated position with GO(OPCS)

 > Enable the tension motors again

 INSTALLATION NOTES
 An example implementation of the load command might be done as
 follows. Add the following command to the 'runcmd' section of your
 opcsdefs.opc file:

 runcmd load load.run 0

 ..then create a file called 'load.run' which contains the
 following text:

 @ # Deenergize tension motors. Clearing port 379 bits 0 & 1.
 @ ! echo @ clrbit 0379 03 00 > foo.defs ! ldefs foo.defs
 @ go ab 1000,-1000
 # *** UNSEATED FOR LOADING ***
 @ pse -noabort
 @ go ab -1000,1000
 @ # Energize tension motors by setting the bits.
 @ ! echo @ setbit 0379 03 00 > foo.defs ! ldefs foo.defs

 Note use of leading '@' signs to disable echoing of the commands,
 to avoid cluttering the screen with unwanted text.

 ANSI characters can be added to the script to embolden messages,
 and erase them when the user hits a key to continue.

 ORIGIN
 Gregory Ercolano, Los Feliz California 12/15/89

l

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

61

og(OPCS)

LOG(OPCS) Optical Printer Control System LOG(OPCS)

 NAME
 log - logs manually entered commands to a file or device

 USAGE
 log [-r] <filename.log>
 log -f <filename> <format string>

 EXAMPLES
 log myfile # Start logging commands to MYFILE.LOG
 log off # Turn off logging.
 log -f tmp.log Camera Feet=%1cF Camera Frames=%1cp%n
 # Append a message to 'tmp.log'
 log <MM-DD-YY> # creates date-stamped log filename

 DESCRIPTION
 The 'log <file>' and 'log off' usage of this command will
 enable/disable logging all commands you enter from the keyboard
 to a file. (Commands in RUN(OPCS) scripts will not be logged.)

 The 'log -f <file> <message>' usage of this command will append
 a message to <file>, where <message> may contain formatting
 characters (see LOGFORMAT(OPCSDEFS)) that lets you embed
 counter values in the message.

 If <filename> is the string "<MM-DD-YY>", then a date-stamped
 filename will be created. Example: if the date is Dec 31 2007
 and you run "log <MM-DD-YY>", the resulting filename will be:

 logs/12-31-07.log

 If the .\logs directory does not exist, it is created.

 'LOG OUTPUT.LOG' AND 'LOG OFF'
 When you quit the software, or enter LOG OFF, the log will
 be closed, and can later be viewed for reference.

 Optionally, the counters can also be logged to the file.
 See the LOGCOUNTERS(OPCSDEFS) man page for more on this.

 To enable logging, specify some filename as an argument. You may
 also use LPT3:, COM1:, or other DOS device names to log directly
 to line printers, etc.

 -r can be specified before the filename to include commands
 in executing RUN(OPCS) scripts to also be logged to the file.
 If -r isn't specified, only commands typed at the keyboard
 will be logged. (-r in OPCS K1.13b+)

 To disable logging, type log off.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

62

 'LOG -F <FILENAME> <MESSAGE>'
 With the -f flag, you can log a single message to a file with
 embedded counter values. For instance, if you want to append
 a message to a log file that includes the current camera counter:

 Replaced with
 Cam's position
 counter
 Replaced with cam |
 feet/frms counter |
 | |
 ---- ----
 log -f tmp.log Camera Feet=%1cF Camera Frames=%1cp%n
 ------- -------------------------------------
 | |
 File Message text

 See LOGFMT(OPCSDEFS) for a list of all the '%' format codes.
 The above example would append the following text to 'tmp.log',
 based on what the camera counter reads at the time:

 Camera Feet=16(1'0) Camera Frames=16
 ------- --
 | |
 Cam's feet/frms Cam's position
 NOTES
 If a file already exists when you start logging to it, messages
 will be *appended* to the existing file. If you want to start
 with a fresh log file, remove it before logging to it, e.g.:

 ! del mylog.log ! log myfile.log

 The LOGCOUNTERS(OPCSDEFS) command controls whether the log records
 the current counter positions or not. If you do not want counter
 data in your logs, add this to your OPCSDEFS.OPC file:

 logcounters off

 ..or from within OPCS you can use:

 ! echo logcounters off > foo ! ldefs foo

 Counter information lines are always preceded by a '#' comment
 character so the log file can be run as a script with RUN(OPCS),
 without the counter data being executed as OPCS commands.

 It is advisable to use '.LOG' as the extension for log files
 so you can differentiate them from other OPCS files.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

63

 CARRIAGE RETURNS IN 'log -f'
 You must include a '%n' at the end of your <message> for the
 message to have a CRLF at the end. Otherwise, the line will
 remain unterminated, letting you concatenate to a single line
 using separate LOG(OPCS) commands, e.g.:

 log -f tmp.log Camera=%1cF,
 log -f tmp.log Projector=%1bF%n

 ..results in appending the following single line to 'tmp.log'

 Camera=16(1'0),Projector=0(0'0)

 To have those appear on separate lines, make sure both commands
 include a %n on the end:

 log -f tmp.log Camera=%1cF%n
 log -f tmp.log Projector=%1bF%n

 ..which results in the following two lines appended to 'tmp.log':

 Camera=16(1'0)
 Projector=0(0'0)

 LINE PRINTERS
 You can use LOG(OPCS) to maintain a continuous hardcopy printout as
 the user enters commands. EXAMPLE:

 log lpt3 # log commands to the LPT3 line printer

 Keep in mind that some of the parallel ports may be being used to
 control motor hardware.

 CAVEATS/WARNINGS
 OPCS log files should not be edited by word processors that introduce
 non-ASCII characters. Use 'edit' or 'vi' which are pre-installed.

 Don't try to edit a log file while it's still logging, or you'll get
 unexpected results. Be sure to run 'log off' before editing.

 BUGS
 If the operator uses ALLSTOP during command logging, it would be
 unwise to later execute the log file as a run script without making
 the proper modifications to the commands that were interrupted. Here
 is a sample log with a command that was interrupted:

 # 1:1 0(0'0) 20(1'4) CLOSED 0
 cam -120

 # ### OPERATOR HIT ALLSTOP KEY
 # 1:1 0(0'0) 18(1'2) CLOSED 0

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

64

 Note the camera counter now reads 18 instead of -100. Because the
 command was interrupted, it never got to finish shooting. This
 could cause confusion later if this log were executed as a RUN script,
 and commands that followed used absolute positioning (cam >134).
 The command cam -120 should then modified by hand:

 cam >18 or cam -2

 ...to reflect the command as it was actually executed.

 SEE ALSO
 LOG(OPCS) - log all commands entered by the user
 RUN(OPCS) - run a log file
 LOGCOUNTERS(OPCSDEFS) - enable/disable logging counters to logfiles
 LOGFORMAT(OPCSDEFS) - formats how values are printed to logfile

 ORIGIN
 Gregory Ercolano, Los Feliz California 11/29/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

65

motors(OPCS)

MOTORS(OPCS) Optical Printer Control System MOTORS(OPCS)

 NAME
 motors - enable/disable the motor hardware for debugging scripts

 USAGE
 motors [on|off]

 DESCRIPTION
 With off as an argument, this command will disable motor
 movement, causing any commands that run motors (pro,cam,rep,go..)
 to NOT move the motors. Counters will run, but the motors will not.
 Also buckle/viewer checks will be disabled, not checking the
 actual hardware.

 This command is useful for testing OPCS without motors and without
 any actual hardware connected, such as developing camera 'run' scripts
 on a portable computer, to be run later on an actual printer.

 RUN(OPCS) scripts will execute faster when 'motors off' is
 in effect, allowing one to rapidly debug complex scripts.

 When motors are disabled with this command, the current position
 of the motors are saved. When you re-enable the motors with
 'motors on', the counters will revert to the previous positions
 just before 'motors off' was issued, avoiding confusion over
 where the motors REALLY are.

 ENVIRONMENT

 OPCS_NOMOTOR_FRAME_DELAY
 (NEW IN K2.21/TC) This environment variable can be set before OPCS
 is started to configure a per-frame msec delay for 'motors off'
 simulated shutter runs for camera/projectors.

 If unset or set to zero, 'motors off' shutter runs are instantaneous,
 the default behavior, enabling rapid debugging of RUN(OPCS) scripts.

 However, it is sometimes useful for simulated shutter runs to consume
 at least some per-frame time. Setting this variable to e.g. 250 msecs
 causes a 1/4 second delay per simulated frame.

 This variable can be set in AUTOEXEC.BAT, or anytime in DOS before
 OPCS is started. For example, this sets the delay to 250ms (1/4 sec):

 set OPCS_NOMOTOR_FRAME_DELAY=250

 ..and this disable the delay (same as if the variable is unset):

 set OPCS_NOMOTOR_FRAME_DELAY=0

 EXAMPLES
 cam 12 # Runs the camera 12x
 motors off # Disable running the motors
 cam 12 # Counter will advance 12x, but motor wont run
 motors on # Enable motors. Counters revert to actual posn.
 cam 12 # Run the camera normally

 SEE ALSO
 CHK(OPCS) - check if counters are where they're supposed to be
 RUN(OPCS) - run OPCS command scripts (quickly with 'motors off')

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

66

opncls(OPCS)

OPN/CLS(OPCS) Optical Printer Control System OPN/CLS(OPCS)

 NAME
 opn - open the fader shutter
 cls - close the fader shutter

 EXAMPLES
 opn # opens the fader
 cls # closes the fader

 DESCRIPTION
 opn and cls allow the user to open or close the fader directly.

 To move the fader to positions other than OPEN or CLOSED, use the
 SHU(OPCS) command to specify absolute degree positions for the fader.

 NOTES
 Specifying OPN or CLS during a pending fade or dissolve will effectively
 cancel the fade/dx, and send the fader to the specified position.

 The system will not acknowledge the ALLSTOP key until AFTER the fader
 has completed running to its position.

 OPN uses the INTERP(OPCSDEFS) command's [high] value to determine the
 degree position for OPEN on your system, and the [low] value to
 determine the degree position for CLOSED. Most cameras have 170
 degree shutters, but some have 120. See INTERP(OPCSDEFS) for details.

 SEE ALSO
 OPCS Commands
 CAM(OPCS) - shoot camera (fades/dissolves too)
 OPN(OPCS), CLS(OPCS) - open/close fader shutter
 SHU(OPCS) - move fader to an absolute position in degrees
 DXI(OPCS), DXO(OPCS) - set up dissolve in/out
 FDI(OPCS), FDO(OPCS) - set up fade in/out

 OPCSDEFS Commands
 FLOG(OPCSDEFS) - set Fader LOGarithmic curve for custom fades
 FRANGE(OPCSDEFS) - set fade/dx's degrees range (for Hicon film stocks)
 INTERP(OPCSDEFS) - set interpolation positions (fader, focus, etc)
 SLOP(OPCSDEFS) - correct for slop in a motor (fader, focus, etc)

 General
 MATH(DOCS) - math expressions (for use in frame specifications)
 SYNTAX(DOCS) - online calculator and OPCS math expression syntax
 INTERP(OPCSDEFS) - setup interpolations for fader, etc.

 ORIGIN
 Gregory Ercolano, Los Feliz California 11/29/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

67

pro(OPCS)

PRO(OPCS) Optical Printer Control System PRO(OPCS)

 NAME
 pro - run the projector so many frames forward or reverse
 pro2 - for two-headed printers, runs projector #2

 USAGE
 pro [frame spec] # run main projector fwd or reverse
 pro2 [frame spec] # run aerial projector (projector2) fwd or reverse

 EXAMPLES
 pro 12 # run projector 12 frames forward
 pro -12 # run proj 12 frames in reverse
 pro 54'11 # run proj 54 feet 11 frames
 pro >0 # run proj TO counter frame zero
 pro >1200 # run proj TO counter frame 1200
 pro >-32 # run proj TO counter frame '-32'
 pro >34'8 # run proj TO counter '34 feet 8 frames'
 pro (sqrt(9)+1) # run proj 4 frames (3+1)

 DESCRIPTION
 This command will shoot the specified frames on the projector.
 Negative numbers will shoot in reverse. So -100 will run the
 projector in reverse 100 frames.

 Values can also be specified as feet/frames (e.g. 2'15), or as
 a mathematical expression (as shown above).

 If the value is preceded by '>', this indicates the projector
 should "go to" the absolute projector frame counter value.

 For dual headed printers, the PRO2 command will run the second
 projector. For compatibility there is a PRO1 command, which is
 the same as the PRO command.

 IMPORTANT NOTES
 OPCS always runs the projector at its fastest speed. See the
 SPD(OPCSDEFS) command for setting the projector's fast speed.

 Running the projector alone will have no effect on fades or dissolves,
 and the viewer may be open during projector runs without causing
 'VIEWER OPEN' errors, allowing viewing scenes in motion.

 ALLSTOP
 Hitting the ALLSTOP key (usually the (`) key) will halt the motors
 at the nearest frame. ALLSTOP is safe during shooting; it will not
 affect exposure, and always leaves the shutter closed after stopping.
 The allstop key can be redefined by ALLSTOP(OPCSDEFS).

 COUNTER OVERFLOWS
 For more info on how counter overflows are handled, see CAM(OPCS).

 BUGS
 See COUNTER note above.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

68

 SEE ALSO
 PRO(OPCS) - run frames on the projector (pro2 also)
 CAM(OPCS) - run frames on the camera
 SEEK(OPCS) - run the camera/projector at slewing speeds
 AUTOFILT(OPCS) - enable/disable the auto-wedging filter wheel
 FEED(OPCS) - feed motion control moves to motors every camera frame
 MATH(DOCS) - math expressions (for use in frame specifications)
 SYNTAX(OPCS) - Online calculator and OPCS math expression syntax
 VELREP(OPCSDEFS) - special purpose velocities for tandem shoots (e.g.. YCM
shooting)

 ORIGIN
 Gregory Ercolano, Los Feliz California 12/18/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

69

pse(OPCS)

PSE(OPCS) Optical Printer Control System PSE(OPCS)

 NAME
 pse - pause a run script

 USAGE
 pse [-noabort] [-nodeb]

 DESCRIPTION
 This command will pause a running script to allow users to adjust
 filters, f-stops, and the like. This command simply prompts the
 operator with a 'Hit RETURN to continue' prompt.

 If the -noabort argument is specified, the user will not be able
 to hit 'allstop' to abort the PSE command, which can be used to prevent
 accidental ALLSTOPs made by the operator in such scripts as LOAD and
 LINEUP (which pause with a device out of phase).

 If the -nodeb argument is specified, the default keyboard
 debouncing is /disabled/. Debounce is the default, which prevents
 a user from holding down ENTER from a previous command to quickly
 pass through the 'pse' prompt (due to typematic repeat).

 For instance, to shoot a 12x wedge of a single projector frame,
 PSE can be used to pause before shooting each frame:

 do 12 pse cam 1 # Wedging commands

 The above will shoot 12x frames, prompting the operator before
 shooting each frame with:

 * PAUSE *
 RETURN to continue, or SPACEBAR to abort:

 ..allowing the operator to change filters, and hit return to shoot
 each frame. (With a filter wheel, of course, one doesn't need to
 do this)

 To prompt for special filters each frame, make a 'wedge.run' script:

 ! echo Load ND-2 ! pse cam 1
 ! echo Load ND-4 ! pse cam 1
 ! echo Load ND-8 ! pse cam 1
 [..etc..]

 This way the camera operator will see a prompt for each filter
 to load.

 NOTES
 Whenever PSE is encountered, the keyboard's buffer is CLEARED of any
 previous characters to prevent accidentally typed characters from
 skipping several PSE commands.

 SEE ALSO
 RUN(OPCS) - execute a run script

 ORIGIN
 Gregory Ercolano, Los Feliz California 04-23-91

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

70

rat(OPCS)

RAT(OPCS) Optical Printer Control System RAT(OPCS)

 NAME
 rat - change the projector/camera shooting ratio for REP commands

 USAGE
 rat [pro2] [pro1] [cam] # For aerial printers
 rat [pro] [cam] # For single head printers

 EXAMPLES
 rat 1 1 # straight print: 1x pro1 for every 1x cam
 rat 2 1 # skip print: 2x pro1 for every 1x camera
 rat -2 1 # reverse skip print: -2x pro1 for 1x cam
 rat 2 2 1 # aerial step print: 1x on pro1 & pro2
 rat 1 -1 2 # aerial stretch frame print

 DESCRIPTION
 RAT sets the shooting ratio for any REP commands that follow.

 The shooting ratio defaults to 1:1, and can be changed by the
 RAT command. Once set, the projector/camera ratio will remain in
 effect until another RAT command is executed.

 You can use negative numbers in a RAT command to run in reverse.

 Feet/frames specifications can be used as arguments for the
 RAT command. e.g.:

 rat 1'0 3'4 # PRO shoots 1 foot, camera shoots
 # 3 feet 4 frames

 NOTES
 Absolute specifications such as '>12' have no meaning in the
 context of the RAT command.

 RAT does not actually SHOOT any frames, it only sets up a shooting
 ratio which is executed by running the REP(OPCS) command. Thus:

 rat -2 1 # set up a -2:1 ratio
 rep 12 # shoot that ratio 12 times

 When the above example executes, the projector will shoot a total
 of -24 frames, and the camera will shoot 12 frames. Each time the
 camera shoots a frame, the projector will backspace 2 frames.

 SEE ALSO
 RAT(OPCS) - set the shooting ratio for the REP command
 REP(OPCS) - shoot current projector/camera shooting ratio
 PROPHASE(OPCSDEFS) - sets projector phase adjustment for 1:1 shooting
 MATH(DOCS) - math expressions (for use in frame specifications)
 SYNTAX(OPCS) - Online calculator and OPCS math expression syntax

 ORIGIN
 Gregory Ercolano, Los Feliz California 11/29/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

71

rep(OPCS)

REP(OPCS) Optical Printer Control System REP(OPCS)

 NAME
 rep - repeat current projector/camera shooting ratio (interlock)

 USAGE
 rep [count] # repeat current ratio [count] times.
 OR
 rep [device] [>frame] # repeat until [device] gets to [>frame]

 EXAMPLES
 rep 4 # repeat the current ratio 4 times
 rep -4 # repeat the current ratio IN REVERSE 4 times
 rep >4 # repeat ratio until camera gets to frame 4
 rep pro >4 # repeat ratio until projector gets to frame 4

 DESCRIPTION
 The REP command shoots the current projector/camera ratio set by the
 last RAT command. The camera ALWAYS exposes BEFORE the projector, so
 when REP is executed, the frame already in the projector's gate is
 exposed first. Example:

 rat 3 1 rep 3

 ...set up a 3 to 1 ratio, and shoot it 3 times. The camera FIRST
 shoots 1 the frame in the projector's gate, then the projector
 advances 3 frames... camera 1, projector 3, etc. After execution, the
 projector runs a total of 9 frames, the camera a total of 3 frames.
 This command is effectively the same as:

 cam 1 pro 3 cam 1 pro 3 cam 1 pro 3
 ----------- ----------- -----------
 1 2 3

 It's also the same as:

 do 3 cam 1 pro 3

 NOTES
 Shooting at a ratio of 1:1 (or -1:-1) is faster than shooting with
 the equivalent commands cam 1 pro 1 repeatedly, because REP will
 run the camera and projector together.

 If you use the absolute specifier '>', REP will repeat the current
 ratio in the direction necessary to get the camera or projectors
 to the specified frame. You can tell REP which motor you want to
 get to the specified frame by specifying any of the following after
 the REP command: CAM, PRO, PRO1, PRO2. Thus:

 rep pro2 >34 # run until pro2 reaches x34

 If you do not specify a device, the camera is always assumed:

 rep >34 # run until camera reaches x34

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

72

 TANDEM SHOOTING
 With old mechanical printers, you had to put the projector out half
 phase before doing a 1:1 shoot (aka. "INTERLOCK") and then back again
 after you completed the shoot. You DO NOT have to worry about this
 when using the REP command; this is done automatically.

 At the start of a 1:1 run (camera AND projector running together),
 the projector will stand still (remain seated) for the camera's first
 1/2 rotation to get the camera and projector's movements in phase.
 Both motors then run together for the duration of the shoot with the
 movements in phase until the camera shoots its last frame.
 At this point the camera stops with the shutter closed (unseated),
 and the projector will continue moving an extra 1/2 rotation, leaving
 a SEATED, UNEXPOSED image in the gate, as usual.

 FADE/DX
 If there are any pending fades or dissolves, the fader will FIRST
 move to its next position before the camera exposes a frame.

 FEED
 If FEED(OPCS) is enabled, the motors will /first/ move to position
 before the camera exposes a frame. (Similar to fade/dx)

 AUTOFILT
 If AUTOFILT(OPCS) is enabled, the camera will first expose the filter
 in the gate before moving the filter wheel. (Like the projector, what
 you see in the gate before shooting is what's about to be shot)

 ALLSTOP
 Hitting the ALLSTOP key (usually the (`) key) will halt the motors
 at the nearest frame. ALLSTOP is safe during shooting; it will not
 affect exposure, and always leaves the shutter closed after stopping.
 The allstop key can be redefined by ALLSTOP(OPCSDEFS).

 BUCKLE/VIEWER
 The camera WILL NOT RUN if the buckle is tripped. When exposing film,
 it also won't run if the viewer is open. If either condition occurs
 while the camera is shooting, the motors will stop with an error at
 the nearest frame, similar to ALLSTOP.

 If 'hardware no' is in effect, the buckle/viewer state is ignored,
 so that the OPCS software can run on remote computers that are not
 physically connected to an optical printer.

 TENSION MOTORS
 Before the camera or projector move, the appropriate tension motors
 are enabled, to ensure take-ups are in correct modes for film motion.

 COUNTER OVERFLOWS
 For more info on how counter overflows are handled, see CAM(OPCS).

 BUGS/TODO
 Needs a -cont flag, to continue rep commands that
 didn't finish shooting, ie. rep >50 dxo 10 rep -cont >60

 SEE ALSO
 RAT(OPCS) - set the shooting ratio for the REP command
 REP(OPCS) - shoot current projector/camera shooting ratio
 PROPHASE(OPCSDEFS) - sets projector phase adjustment for 1:1 shooting
 MATH(DOCS) - math expressions (for use in frame specifications)
 SYNTAX(OPCS) - Online calculator and OPCS math expression syntax

 ORIGIN
 Gregory Ercolano, Los Feliz California 11/29/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

73

res(OPCS)

RES(OPCS) Optical Printer Control System RES(OPCS)

 NAME
 res - reset computer's projector/camera counters to new values

 USAGE
 res [pro2] [pro1] [cam] # aerial, main and camera
 res [pro1] [cam] # main projector and camera
 res [cam] # just the camera

 EXAMPLE
 res 0 0 # zero the projector and camera counters
 res 300 - # set pro1 counter to 300, cam counter unchanged
 res 0 0 0 # zero the pro2, pro1 and camera counters
 res 12'2 0 # set pro to 12 feet 2 frames, and camera to 0

 DESCRIPTION
 The RES command allows the operator to change the setting of the
 projector and camera counters to new values. At least 2 values must
 be specified.

 Use '-' to leave a counter at its current value.

 Feet/frame specifications are allowed as arguments, but absolute
 specifications (such as >34) have no meaning in the context of the
 RES command, as absolute positions are already implied.

 SEE ALSO
 RESET(OPCS) - Reset specified channels to specified values

 ORIGIN
 Gregory Ercolano, Los Feliz California 11/29/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

74

reset(OPCS)

RESET(OPCS) Optical Printer Control System RESET(OPCS)

 NAME
 reset - reset the counters of one or more motors

 USAGE
 reset [chans] [position[,position,...]]

 EXAMPLES
 reset d -10 # reset position for channel D to -10
 reset efgh 0 # reset channels EFGH to ZERO
 reset efg 120,130,0 # reset e to 120, f to 130, g to 0

 DESCRIPTION
 This command allows you to specify new counter values for the
 specified channels.

 SEE ALSO
 SHOW(OPCS) - show current positions for all motors
 RES(OPCS) - reset projector/camera counters to new values

 ORIGIN
 Gregory Ercolano, Los Feliz California 09/04/90

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

75

run(OPCS)

RUN(OPCS) Optical Printer Control System RUN(OPCS)

 NAME
 run - execute a command script

 USAGE
 run [filename] {optional linenumber}

 EXAMPLES
 run test.run # start executing commands from TEST.RUN
 run test.run 5 # execute test.run starting at line #5
 do 12 run test.run # execute test.run 12 times

 DESCRIPTION
 Tells the OPCS software to execute commands from a 'run' file.

 Whatever commands you can type interactively can appear in a RUN
 file. Several commands can appear on a line, and comments can be
 used through-out. NEWLINES, SPACES and TABS can be used as necessary
 to separate lines or blocks of code.

 Usually RUN(OPCS) executes the entire file. You may however specify
 starting execution at a particular LINE NUMBER, which is an
 "optional argument" that should appear after the filename.
 If the argument isn't supplied, '1' is the default.

 The file should be an ASCII text file, and can be created by:

 1) The LOG(OPCS) command
 2) A text editor
 3) Your own software tools

 DISABLING ECHOING
 Following the DOS standard, any lines in a run script file can start
 with '@' to prevent the line from echoing to the screen while the script
 executes. This is useful for preventing commands echoing to the screen
 that do not need to be seen by the operator. For example, the 'pse'
 command in the example below:

 # INSERT ND FILTER
 @pse # wait for the operator to hit a key

 In this case, '@' in front of 'pse' prevents the entire line from echoing
 to the screen. When the above is executed, one sees:

 # INSERT ND FILTER
 Hit RETURN to continue, or ALLSTOP to abort:

 If the '@' were removed, one would see the following more confusing
 output when executed:

 # INSERT ND FILTER
 pse # wait for the operator to hit a key
 Hit RETURN to continue, or ALLSTOP to abort:

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

76

 RECURSIVE RUN COMMANDS
 If the LOG(OPCS) command is in effect and a RUN command is executed,
 only the RUN command will appear in the log file (the LOG file will
 not start filling with the contents of the script that was called).

 You can have run scripts call other run scripts. Keep in mind that
 you must adjust FILES in your DOS 'CONFIG.SYS' file to be 20 or
 more, depending on how many levels deep you want run scripts to
 call one another. These are recommended commands for your CONFIG.SYS
 file:

 FILES=20
 BUFFERS=40
 DEVICE=ANSI.SYS

 Scripts that call themselves, or that call parenting scripts will
 cause 'recursion' errors. This protects the user from creating
 a situation that calls itself infinitely, which would inevitably
 bomb out when the operating system runs out of open file handles.

 LIMITS
 You can nest RUN(OPCS) commands up to 20 levels deep.

 BUGS
 none yet.

 SEE ALSO
 DO(OPCS) - repeat a string of commands several times
 RUNCMD(OPCSDEFS) - define built in OPCS commands as run scripts
 LOG(OPCS) - log all commands entered by the user
 RUN(OPCS) - run a log file
 LOGCOUNTERS(OPCSDEFS) - enable/disable logging counters to logfiles
 LOGFORMAT(OPCSDEFS) - formats how values are printed to logfile

 ORIGIN
 Gregory Ercolano, Los Feliz California 12/16/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

77

seek(OPCS)

SEEK(OPCS) Optical Printer Control System SEEK(OPCS)

 NAME
 seek - seek to positions quickly on camera/projector(s)

 USAGE
 seek [pro2] [pro1] [cam] # slew pro2, pro1 and camera
 seek [pro1] [cam] # slew pro1 and camera
 seek [cam] # slew just the camera

 '-' can be used in place of arguments for motors that you do not
 want to change.

 EXAMPLES
 seek >101 # camera seeks to x101
 seek >100 >101 # pro1 to x100, camera to x101
 seek >1200 >55 >0 # pro2 to x1200, pro1 to x55, cam to x0
 seek >1200 - >34 # pro2 to x1200, pro1 unchanged, cam to x34
 seek 1200 1200 # slew 1200x on both pro1 and cam

 DESCRIPTION
 SEEK is used to seek to certain frame positions at high speed. This
 command is not to be used for exposing film (see notes below).

 If SEEKCAP(OPCSDEFS) is set to 'yes', the fader will automatically
 cap whenever the SEEK command runs the camera. After winding, the
 fader will return to its previous position.

 SEEK ignores any FEED(OPCS) files in progress. This allows you to
 shuttle film around without interfering with motion control moves.

 SEEK allows a simple way to quickly seek to start positions. SEEK
 figures out the proper ratios to get all the motors to their positions
 as quickly as possible. When running the camera, the 'fastwind' speed
 is used (see SPD(OPCSDEFS)), instead of the current 'exposure' speed.

 SEEK can be used in place of:

 pro2 >1000 pro1 >1200 cam >100

 ..which will take a long time to run because it runs the motors
 one at a time. The 'seek' equivalent would be:

 seek >1000 >1200 >100

 Note the use of > to specify absolute frame positions. Without
 it, frame numbers will be interpreted as a relative 'windoff' value,
 the same way the other OPCS commands work.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

78

 If you want to ignore a particular motor, just specify a dash (-) as
 that motor's argument, and the motor will not be moved, i.e:

 seek >1200 - >100
 ^
 Ignore 'projector' channel

 Normally, camera operators will want SEEKCAP(OPCSDEFS) enabled so the
 fader automatically caps during a SEEK that involves camera motion
 to prevent exposing film.

 The shutter position before SEEK executes is preserved on completion.

 WARNINGS
 Do not use SEEK for exposing film, it's only for slewing.
 It is recommended SEEKCAP(OPCSDEFS) be enabled to avoid exposing
 film during seeks involving the camera.

 During a seek:

 > The camera runs at its slewing speed, NOT the exposure speed.
 > The projectors will NOT run in sync with the camera [NOTE 1]
 > The projectors may not run in sync with each other [NOTE 1]
 > The state of the viewer is ignored [NOTE 2]
 > Film buckles will be checked
 > Any pending Fades, Dissolves, and Feeds will be unchanged
 > Fader will cap to prevent exposure [NOTE 3]

 NOTE #1: If their slewing speeds and/or PPR(OPCSDEFS) are different
 NOTE #2: Assuming buckle and viewer are not wired together
 NOTE #3: If SEEKCAP(OPCSDEFS) has been configured.

 SEE ALSO
 SPD(OPCSDEFS) - sets the normal and slew speeds for motors
 SEEKCAP(OPCSDEFS) - configure the fader to cap during SEEK commands
 PPR(OPCSDEFS) - sets Pulses Per Revolution (PPR) for each channel
 MATH(DOCS) - math expressions (for use in frame specifications)
 SYNTAX(OPCS) - Online calculator and OPCS math expression syntax

 ORIGIN
 Gregory Ercolano, Los Feliz California 09/04/90

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

79

show(OPCS)

SHOW(OPCS) Optical Printer Control System SHOW(OPCS)

 NAME
 show - show positions for all 8 motors

 USAGE
 show [-all] [-d]

 DESCRIPTION
 Shows the current position counters for all motors. Shutter motors
 (ABC) will show positions in 'frames'.

 Interpolation channels (such as the fader) will show positions in
 actual step positions, NOT interpolation positions.

 The -all flag shows all information about each motor.

 The -d is a special internal debugging flag that should
 not be used in production, and is for developer's use only.

 EXAMPLES
 >show
 A=0 I=0
 B=0 J=0
 C=0 K=0
 D=0 L=0
 E=0 M=0
 F=0 N=0
 G=0 O=0
 H=0 P=0

 >show -all
 A CHANNEL B CHANNEL
 Name: Aerial Name: Main
 Counter: 0 Counter: 0
 PPR: 2000 PPR: 2000
 Mrp: 500 Mrp: 500
 NormRamp: 3,120 NormRamp: 3,120
 SlewRamp: 3,120 SlewRamp: 3,120
 ActSpeed: 0.25 ActSpeed: 0.25
 NormSpeed: 0.25 NormSpeed: 0.25
 SlewSpeed: 0.18 SlewSpeed: 0.18
 Fpf: 16 Fpf: 16
 Slop: 0 Slop: 0

 C CHANNEL D CHANNEL
 Name: Camera Name: Fader
 Counter: 0 Counter: 0
 PPR: 2000 PPR: 2000
 Mrp: 500 Mrp: 1000

 ..snipped..

 SEE ALSO
 GO(OPCS) - move motor channels to new step positions
 BIGCOUNTERS(OPCSDEFS) - changes on-screen counter display

 ORIGIN
 Gregory Ercolano, Los Feliz California 09/04/90

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

80

shu(OPCS)

SHU(OPCS) Optical Printer Control System SHU(OPCS)

 NAME
 shu - move the fader to an absolute position in degrees

 USAGE
 shu [degrees]

 EXAMPLE
 shu 80.20 # move fader shutter to 80.20 degrees
 shu 0 # fully close the fader shutter

 DESCRIPTION
 Allows the operator to move the fader shutter to the absolute [degrees]
 position (in floating point degrees), and must be in the range
 0.00 to 170.00 for a 170 degree camera shutter, or
 0.00 to 120.00 for a 120 degree camera shutter.
 See INTERP(OPCSDEFS) for configuring the camera's fader settings.

 NOTES
 SHU during fades or dissolves effectively CANCELS them,
 forcing the fader to the specified [degrees] position.

 Although floating point degrees can be specified to many digits,
 actual movement will be limited to the physical resolution of the
 motor hardware. Example: If the fader is at 2.00 degrees and you
 invoke 'spd 2.01', if the resulting physical distance of such a move
 is less than a single microstep on the motor, the motor will not
 move at all, and the display will still indicate 2.00.

 The fader's floating point position is limited to 2 digits after the
 decimal point. Internally the software manages the hardware's actual
 position, which may be more accurate than what the display shows.
 So the hardware will, if capable, manage e.g. 54.000594 as a valid
 physical position internally, even if the display only shows '54.00'.

 SEE ALSO
 OPCS Commands
 CAM(OPCS) - shoot camera (fades/dissolves too)
 OPN(OPCS), CLS(OPCS) - open/close fader shutter
 SHU(OPCS) - move fader to an absolute position in degrees
 DXI(OPCS), DXO(OPCS) - set up dissolve in/out
 FDI(OPCS), FDO(OPCS) - set up fade in/out

 OPCSDEFS Commands
 FLOG(OPCSDEFS) - set Fader LOGarithmic curve for custom fades
 FRANGE(OPCSDEFS) - set fade/dx's degrees range (for Hicon film stocks)
 INTERP(OPCSDEFS) - set interpolation positions (fader, focus, etc)
 SLOP(OPCSDEFS) - correct for slop in a motor (fader, focus, etc)

 General
 MATH(DOCS) - math expressions (for use in frame specifications)
 SYNTAX(DOCS) - online calculator and OPCS math expression syntax

 ORIGIN
 Gregory Ercolano, Los Feliz California 11/29/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

81

spd(OPCS)

SPD(OPCS) Optical Printer Control System SPD(OPCS)

 NAME
 spd - set the camera's exposure speed

 USAGE
 spd [speed] # set CAMERA's exposure speed
 spd [+-/*][speed] # relative adjust current exposure speed

 EXAMPLES
 spd .30 # set camera's speed to .30 second
 spd +.1 # add 0.1 to current camera speed

 DESCRIPTION
 This command sets the camera's exposure speed.

 Speeds can also be adjusted relative to the current speed by adding
 a prefix to the numeric speed value with one of the following:

 Prefix Description Examples
 ------ --------------------------------- --------
 + Add value to current speed spd +.10
 - Subtract value from current speed spd -.10
 * Multiply current speed by value spd *2.0
 / Divide current speed by value spd /2.0

 This is useful for wedging camera exposures. EXAMPLE:

 spd .20 do 9 cam 1 spd +.10

 ..this will shoot a 9 frame exposure wedge for the camera speeds
 at .10 increments, from .20 thru 1.0.

 The equivalent commands without the 'do 9' loop would be:

 spd .20 cam 1
 spd .30 cam 1
 spd .40 cam 1
 spd .50 cam 1
 spd .60 cam 1
 spd .70 cam 1
 spd .80 cam 1
 spd .90 cam 1
 spd 1.0 cam 1

 Depending on how SPD(OPCSDEFS) is configured in OPCSDEFS.OPC,
 the speed values can be ROTATIONAL speed, or an EXPOSURE speed.
 See SPD(OPCSDEFS) for details.

 SEE ALSO
 SPD(OPCSDEFS) - setting default speeds for motors
 RAMP(OPCSDEFS) - motor ramping maximums
 MRP(OPCSDEFS) - maximum ramping pulses for the shutter
 SPDINTERP(OPCSDEFS) - set auto-interpolation for exposure speeds

 HISTORY
 The '+' prefix (e.g. 'spd +.1') was added in OPCS version K1.12E.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

82

unlock(OPCS)

UNLOCK(OPCS) Optical Printer Control System UNLOCK(OPCS)

 NAME
 unlock - (CUSTOM) unlock motors for manual adjustment

 USAGE
 unlock [no arguments]

 DESCRIPTION
 Unlocks some or all of the motors to facilitate manual adjustment.

 This command is actually a script defined with a RUNCMD(OPCSDEFS)
 command, and is normally customized by your local site engineer.

 Some sites may prefer NOT to configure this command, since the
 LOAD(OPCS) and LINEUP(OPCS) prevent the need for manual adjusting.

 This command normally does the following operations:

 > Deenergize the motors
 > Pause to allow user to manipulate the freewheeling axes
 > Re-energize the motors
 > Home them all

 INSTALLATION NOTES
 The unlock command is defined in the 'runcmd' section of OPCSDEFS.OPC:

 runcmd unlock unlock.run 0

 ..and the file 'unlock.run' would contain something like:

 @ # Deenergize the motors. Clearing port 379 bit #7.
 @ ldefs -c clrbit 0379 80 00
 # *** UNSEATED FOR LOADING ***
 @ pse -noabort
 @ # Re-energize motors by setting the bit.
 @ ldefs -c setbit 0379 80 00
 @ # Home the motors we deenergized
 @ home a b c d

 NOTE: In the older OPCS K1.xx versions 'ldefs -c' is not available,
 so the following commands would be used instead:

 --- OLD VERSION OF OPCS --
 @ # Deenergize the motors. Clearing port 379 bit #7.
 @ ! echo @ clrbit 0379 80 00 > foo.defs ! ldefs foo.defs
 # *** UNSEATED FOR LOADING ***
 @ pse -noabort
 @ # Re-energize motors by setting the bit.
 @ ! echo @ setbit 0379 80 00 > foo.defs ! ldefs foo.defs
 @ # Home the motors we deenergized
 @ home a b c d

 Note use of leading '@' signs to disable echoing of the commands,
 to avoid cluttering the screen with unwanted text.

 ANSI characters can be added to the script to embolden messages,
 and erase them when the user hits a key to continue.

 ORIGIN
 Gregory Ercolano, Los Feliz California 04/12/98

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

83

velrep(OPCS)

VELREP(OPCS) Optical Printer Control System VELREP(OPCS)

NAME
 velrep - special purpose velocity repeat patterns for tandem shooting

USAGE
 velrep [filename] [repcnt]

 'filename' is the name of a '.vrp' file (format described
 below) that contains the commands to define the velocities
 necessary for tandem shooting.

 'repcnt' is the number of times to loop the velocity
 patterns defined in the .vrp file. (e.g. the .VRP 'repeat' command)

DESCRIPTION
 This command lets advanced users define very specific velocity patterns
 to send to the motors for precise tandem-motor shooting, such as shooting
 YCM B & W separation masters at full speed.

 Basically, any situation where shooting with separate cam and pro commands
 is too slow.

 The .vrp file defines which motors will be running.

 Normally this command is not executed directly by camera operators;
 typically a custom OPCS 'runcmd' command is defined to invoke velrep
 to implement shooting operations. This way, the runcmd programmer
 can hide the filename, which the camera operator shouldn't have to
 deal with.

 For instance, one might define a 'ycmshoot' command in the OPCSDEFS.OPC
 file as:

 runcmd ycm ycm.run 1

 ..and creating a one-line 'ycm.run' file that contains:

 @velrep ycm.vrp $1

 Then the operator can just type 'ycm 10', and this will actually invoke
 'velrep ycm.vrp 10' behind the scenes.

LIMITATIONS
 During VELREP runs, ONLY SHUTTER COUNTERS UPDATE.
 Any movement on non-shutter channels (D channel and up) does NOT
 adjust counters. (Motor drivers in ROTCOUNT mode should count
 in steps for channels D and up. Or, new STEPCOUNT bit added to vels.)

 The 'if_finalrep_goto" has been implemented, but not tested.

EXAMPLE
 velrep campro.vrp 5 # repeat the campro.vrp pattern 5 times

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

84

THE .VRP FILE FORMAT

<label>: # text label used to identify blocks of vels
0 0 0 # vels, one for each channel (a, b, c..)
-10 0 0 # '-' prefix indicates run in reverse
10+ 10+ 10+ # '+' postfix indicates increment/decrement the
 # frame counter by 1. Inc or dec depends on the
 # vel's direction; 10+ will inc, -10+ will dec.
0! 0 0 # '!' postfix (in 'a' chan ONLY) does 'allstop check'
 # (if true, jumps to <label> for 'allstop <label>')
 # 'allstop <label>' must be defined if ! specified.
 # Check is done AFTER these vels are sent to motors.
goto <label> # where to go next after last vels sent
repeat <label> # if repeating, go to <label>
allstop <label> # if allstop occurs, jumps to <label> to stop the motors
 # Only one 'allstop <label>' allowed in entire file.
 # '!' postfix indicates where to do the allstop check.
tension +1 +1 -1 .. # Sets directions motors are primarily running,
 # either +1 (fwd), -1(rev), or 0 (still) for each chan.
done # return to OPCS, shooting completed

 o Lines whose first character starts with a '#' are ignored.
 These are comment lines, and are not parsed by velrep.

 o Each line should have no more than 256 characters.

 o Always checks for BUCKLE and VIEWER as part of allstop checking.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

85

EXAMPLE VRP FILE

TEST.VRP - A simple run of projector only
##
> An 811 pulse ramp up/dn
> repeatable linear run that can be looped
> 'allstop/buckle/viewer' can interrupt and resume cleanly
##
These numbers came from running a 'pro' command where:
##
ppr 5000 <-- 5000 pulses per rev
spd b .35 .35 1 0 <-- .35 speed
mrp 800 <-- MRP 800
ramp b 10 200 10 200 <-- (not used for shutter runs)
##
##
To capture the vels, use 'velsav foo.pos', which can then be edited
using VIM columnar copy/paste. Use: MOVOP FOO.POS v2p b 1 100
..to convert vels to positions to check + graph moves with GR.
##

CHANGE TENSION MOTORS TO RUN FORWARD FOR CAM AND PRO
tension 0 +1 0

begin:
 # RAMP UP: in 811 pulses
 #
 # AER PRO CAM
 # --- --- ---
 0 1 0 # p=1
 0 3 0
 0 9 0
 0 19 0
 0 35 0
 0 61 0
 0 90 0
 0 106 0
 0 116 0
 0 122 0
 0 124 0
 0 125 0 # p=811
goto linear_811 # Jump into middle of linear run
allstop rampdown

again:
 # Start of 10000 pulse linear frame loop
 0 135 0 # p=4189 -- this would be start of rampdown
 0 135 0
 0 136 0
 0 135 0
 0 135 0
 0 135 0 # p=5000 - would be end of rampdown

 # last 811 vels before loop
 0 136 0 # p=0 -- this would be the rampup
 0 135 0
 0 135 0
 0 135 0
 0 135 0
 0 135 0 # p=811

Enter linear section from ramp up
linear_811:
 0 135 0
 0 135 0
 0 135 0
 0 136 0
 0 135 0
 0 135 0
 0 135 0
 0 135 0
 0 135 0
 0 135 0
 0 135 0

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

86

 0 136 0
 0 135 0
 0 135 0
 0 135 0
 0 135 0
 0 135 0
 0 135 0
 0 136+ 0 # <-- '+' SUFFIX: ADVANCE PRO COUNTER +1
 0 135 0
 0 135 0
 0 135 0
 0 135 0
 0 135 0
 0! 135 0 # p=4189 <-- ALLSTOP CHECK
 # This is where we jump to 'rampdown'
 # if allstop or buckle/viewer is tripped

repeat again # Repeat loop:
 # Falls thru to "rampdown" on last frm of VRP repeat count

rampdown:
 # Here's the 811 pulse rampdown to a stop.
 0 125 0 # p=(4189+125)
 0 124 0
 0 122 0
 0 116 0
 0 106 0
 0 90 0
 0 61 0
 0 35 0
 0 19 0
 0 9 0
 0 3 0
 0 1 0 # p=5000 (STOP)
 0 0 0 # ** STOP **
 0 0 0 # <- HOLD for several samples (debugging)
 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0 0
done

ORIGIN
 Gregory Ercolano, Altadena, California 12/15/03

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

87

velsav(OPCS)

VELSAV(OPCS) Optical Printer Control System VELSAV(OPCS)

NAME
 velsav - special purpose save motor run velocities to file

USAGE
 velsav <filename> -- starts saving motor velocities to <filename>
 velsav off -- turn off saving vels

EXAMPLE USE
 velsav vels.txt -- enables motor vels to be saved to vels.txt
 go abc 100,200,500 -- moves motors (adds content to vels.txt)
 velsav off -- closes vels.txt file
 edit vels.txt -- view contents of vels.txt to see vels

DESCRIPTION
 This command allows motor velocities used during motor moves
 to be saved (appended) to the specified filename.

 VELSAV(OPCS) is similar to LOG(OPCS), staying in effect until disabled
 with 'velsav off'.

 If enabled, whenever a motor movement command (like 'go' or 'cam')
 completes, the motor velocities still in the ring buffer from the move
 are appended to the specified file. Example for a 'go' command:

go abc -50,-100,-200
#----------- VELS ------------ # ---------------- DISTANCE ---------------
A B C D E F # A B C D E F
#---- ---- ---- ---- ---- ---- # ------ ------ ------ ------ ------ ------
 -10 -10 -10 0 0 0 # -10 -10 -10 0 0 0
 -20 -20 -20 0 0 0 # -30 -30 -30 0 0 0
 -10 -30 -30 0 0 0 # -40 -60 -60 0 0 0
 -10 -20 -40 0 0 0 # -50 -80 -100 0 0 0
 0 -10 -30 0 0 0 # -50 -90 -130 0 0 0
 0 -10 -30 0 0 0 # -50 -100 -160 0 0 0
 0 0 -20 0 0 0 # -50 -100 -180 0 0 0
 0 0 -10 0 0 0 # -50 -100 -190 0 0 0
 0 0 -10 0 0 0 # -50 -100 -200 0 0 0
 0 0 0 0 0 0 # -50 -100 -200 0 0 0

 Each line has the velocity samples for the channels of the move,
 followed on the right by the total distance traveled for each channel.

 The LEFT 6 COLUMNS are the raw motor velocities (in decimal values)
 for each of the 6 motor channels A-F.

 The RIGHT 6 COLUMNS shows the accumulated distance traveled (in
 decimal value steps) since the beginning of the move.

 > KUPER/RTMC cards use 120 vels per sec, so each row is 1/120th sec.
 > A800 cards use 107 vels per sec, so each row is 1/107th sec.

 The data saved by this command can be used to build VELREP(OPCS) files
 by copy/pasting together the columns of velocities.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

88

LIMITATIONS
 Not all motor movement commands support having velocities saved,
 e.g. VELREP(OPCS), FEED(OPCS).

 The output is designed to fit on a DOS 80 column screen for easy editing.
 So only channels A-F are saved.

 Moves longer than 15 seconds will show up truncated. Only what's left
 behind in the motor's 64k ring buffer is saved, which at 32 bytes per
 sample and 120 samples per second means a limit of 2048 samples, or
 about 16 seconds of motor movement.

 This command will reveal the inner complexities of some commands,
 like REP and SEEK, which do small movements before and after the
 main movement. For instance, REP will phase-adjust the projector
 before and after a tandem run. These small movements will be included
 in the file as separate tables of movement.

HISTORY
 Added in K2.10TC 02/14/2022.

ORIGIN
 Gregory Ercolano, Alhambra, California 02/14/22

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

89

This page intentionally left blank.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

90

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

91

INTRO: OPCSDEFS

INTRO(OPCSDEFS) Optical Printer Control System INTRO(OPCSDEFS)

 The OPCSDEFS section of the manual describes the OPCSDEFS.OPC config
 file commands, generally used only during initial setup of the software.
 To get a list of all the OPCSDEFS commands, use: 'man -k OPCSDEFS:', e.g.

 ! - DOS shell execute
 allstop - define the ALLSTOP key
 bang - DOS shell execute
 baseaddr - sets motion control card's base address
 bigcounters - enable/disable big counters
 buckle - define buckle sensor ports/bits
 clrbit - clear bit(s) on a port
 debugger - enable OPCS system debugging
 dirxor - invert a motor's direction
 doscmd - define a DOS command to OPCS
 faderdisplay - on/off display of fader counter
 filter - define channel to control a filter wheel
 flog - set fader logarithm characteristics
 fpf - set the 'frames per foot' for a motor
 frange - set fade/dx's degree range (Hicon film stocks)
 hardware - enable/disable hardware
 interp - set up interpolations for a motor
 jogstep - set jog mode's vernier/crawl stepping rate
 keyfunc - define keys for KEY(OPCS) mode
 logcounters - update counter info to log files
 logformat - format how counters appear in log files
 mrp - set maximum ramp pulses for shutter ramping
 opcscmd - execute an OPCS command from within defs file
 ppr - set the pulses per revolution
 pro2display - on/off display of pro2 info
 prophase - set pro phase adjust for 1:1 shooting
 ramp - set motor's max accels & velocities
 rampcurve - sets ramping curve for shutter runs
 respond - setup device for responses to commands
 runcmd - define custom OPCS commands
 sampspersec - sets the velocity sample rate
 setbit - set bit(s) on a port
 seekcap - set auto-fader cap for seek command
 slop - set the amount slop in fader
 spd - set the initial speed for a channel
 spdinterp - set auto-interpolation for exposure speeds
 startspeed - start speed for ramping
 tension - set the tension motor port
 tripswitch - set up tripswitches
 viewer - set the viewer input port and bit mask
 xorbit - flip bit(s) on a port (exclusive-or)

SEE ALSO
 OPCS(DOCS) - OPCS main program
 SYNTAX(DOCS) - Online calculator and OPCS math expression syntax
 A800(DOCS) - Notes on the A800 stepper motor control board
 RTMC48(DOCS) - Notes on the RTMC48 stepper motor control board
 CENTENT(DOCS) - Centent driver wiring
 QUICKREF(DOCS) - Camera operator quick reference ***
 OPCSETUP(DOCS) - OPCS hardware/software setup details ***
 OPCSHARD(DOCS) - OPCS hardware ***
 VERSION(DOCS) - OPCS version history

ORIGIN
 Gregory Ercolano, Los Feliz California 08/17/20

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

92

allstop(OPCSDEFS)

ALLSTOP(OPCSDEFS) Optical Printer Control System ALLSTOP(OPCSDEFS)

 NAME
 allstop - define the ALLSTOP key

 USAGE
 allstop [port] [mask] [test] [0] # (all values in hex!)

 EXAMPLES
 allstop 0060 7f 46 0 # typical for SCROLL LOCK key

 DESCRIPTION
 This command defines the allstop key for the software. The ALLSTOP
 button can be any key, or for that matter any bit on any port on the
 IBM PC, but keyboard's (`) key is recommended.

 All parameter values are in hexadecimal.

 [port] is the port number to read in the range 0000-03ff.
 Use 0060 for the keyboard.

 [mask] is applied to the value received from the port
 whenever the software is checking for an allstop condition.
 This is applied before comparing to [test].

 [test] is compared to the value read from the port after
 [mask] is applied. If the result is the same as [test], an allstop
 condition exists.

 [0] is always zero.

 Under normal conditions, [port] is 0060 (the keyboard port), [mask]
 is usually '7f' (meaning mask off the high bit) and [test] is normally
 '29', which is the (`) key's keyboard scancode.

 The software essentially uses the following C code to read the port:

 if ((inp(port) & mask) == test)
 {
 /* An allstop condition exists */
 }

 BUGS
 None.

 SEE ALSO
 DEENERGIZE(OPCSDEFS) - define port/bit to deenergize motors
 ALLSTOP(OPDSDEFS) - define port/bit to detect the allstop key
 BUCKLE(OPCSDEFS) - define port/bit to detect film buckles
 VIEWER(OPCSDEFS) - define port/bit to detect viewer open
 TRIPSWITCH(OPCSDEFS) - define port/bit to detect trip switches
 SETBIT(OPCSDEFS) - set bit(s) on a port
 CLRBIT(OPCSDEFS) - clear bit(s) on a port
 XORBIT(OPCSDEFS) - invert bit(s) on a port

 ORIGIN
 Gregory Ercolano, Los Feliz California 09/11/90

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

93

!(OPCSDEFS)

!(OPCSDEFS) Optical Printer Control System !(OPCSDEFS)

 NAME
 ! - execute a shell command from within OPCSDEFS file

 SYNOPSIS
 ! [command]

 EXAMPLES
 ! copy *.* a:\safe # run the DOS 'copy' command
 ! myprog 12 34 56 # run 'myprog 12 34 56' from DOS

 DESCRIPTION
 Like the !(OPCS) command, !(OPCSDEFS) executes commands from DOS
 in a DOS shell. But this allows the user to have programs executed
 automatically while the OPCSDEFS.OPC file is being parsed when the
 OPCS software is started.

 This is useful to initialize other pieces of hardware not associated
 with the OPCS software, or other modular programs that should be run
 as part of the initialization process.

 COMMAND STACKING
 As with all OPCSDEFS commands, it is recommended that you avoid
 'stacking' more than one command on any one line (like you can with
 OPCS commands at the operator's prompt). Put each separate OPCSDEFS
 command on its own separate line to avoid parsing problems.

 BUGS
 '!' commands must be on a line by themselves. So you can't 'quote'
 commands with '!' in DEFS files the way you can at the OPCS prompt.
 So for example, the following will NOT WORK in an OPCSDEFS file:

 ! myprog 12 34 56 ! ramp a 1 12

 ORIGIN
 Adapted after examples set by such UNIX utilities as VI, ED, etc.
 UNIX is a trademark of AT&T.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

94

baseaddr(OPCSDEFS)

BASEADDR(OPCSDEFS) Optical Printer Control System BASEADDR(OPCSDEFS)

 NAME
 baseaddr - configure the Kuper/A800 motion control card base address

 NOTE: This command was removed in OPCS K2.10 and up.
 See OBSOLETE and HISTORY below.

 USAGE
 baseaddr [port] # port value in hex, so "300" is 300 hex

 EXAMPLES
 baseaddr 300 # sets base address to 300 hex (default)

 DESCRIPTION
 The stepper motor pulse generator motion control cards that OPCS
 uses all have a "base address" that is configured with jumpers on
 the cards themselves.

 The 'baseaddr' must match the jumper setting on the card.

 The default for all the cards is '300', a commonly available
 hex address for industrial cards.

 OBSOLETE
 In OPCS K2.10 (and up) the 'baseaddr' command was made obsolete, and
 should no longer specified in OPCSDEFS.OPC, in favor of setting the
 card's base address as a command line parameter to the driver, e.g.

 a800drv.com -b0300 -- starts A800 driver, sets baseaddr to 300
 rtmc48.com -b0300 -- starts RTMC48 driver, sets baseaddr to 300
 mdrive.com -b0300 -- starts RTMC16 driver, sets baseaddr to 300

 See "HISTORY" below for the history of this change.

 BASE ADDRESS CONFIGURATION
 For information on how to configure the stepper pulse generator cards
 for different "base address" and IRQ settings, see the following documents:

 man a800 -- the A800 card documentation
 man rtmc16 -- the RTMC16 card documentation
 man rtmc48 -- the RTMC48 and Kuper Industrial card documentation

 HISTORY
 This command was introduced in K2.00, and removed in K2.10:
 In K1.xx the base address was configured in the "STARTUP.DEFS" file.
 In K2.00 "STARTUP.DEFS" was removed, and the command moved to OPCSDEFS.OPC.
 In K2.10 "baseaddr" was removed from OPCSDEFS.OPC in favor of setting
 the base address as a command line parameter to the card's driver.
 (See "OBSOLETE" above for info on how that's specified)

 SEE ALSO
 A800(DOC) - Documentation for the A800 card and driver
 RTMC48(DOC) - Documentation for the RTMC48 card and driver
 RTMC16(DOC) - Documentation for the RTMC16 card and driver

 ORIGIN
 Version K2.00 Gregory Ercolano, Alhambra California 05/09/20

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

95

bigcounters(OPCSDEFS)

BIGCOUNTERS(OPCSDEFS) Optical Printer Control System BIGCOUNTERS(OPCS)

 NAME
 bigcounters - sets the style of the onscreen counters

 SYNOPSIS
 bigcounters on # big counters (same as 'large')
 bigcounters off # small font counters (same as 'mocon')
 bigcounters large # (K2.xx) big counters, takes 17 lines on display
 bigcounters nixie # (K2.xx) "nixie" counters, maximizes digits
 bigcounters mocon # (K2.xx) small font counters, showing ALL mocon channels
 bigcounters small # (K2.xx) small font counters, takes 3 lines on display

 DESCRIPTION
 This command controls the style of counter display you see
 at the top of the OPCS screen.

 In OPCS K1.xx the only options were 'on' and 'off'.
 The other options were added in K2.xx and up.

 The best display for simple printing is either 'bigcounters on'
 (default) or 'bigcounters nixie', the latter a slightly smaller
 size allowing for more digits per counter, but both sizes are easy to
 read from across a room.

 For motion control moves, it's best to have 'bigcounters mocon',
 which shows the small printer counters, and the positions of all
 channels A-P. This way while axes are moving, you can monitor
 all their positions in real time.

 The absolute smallest counters are 'bigcounters small', which take up
 only the top 3 lines of the screen, leaving the rest for the camera
 operator's command history.

 With one of the above commands in your OPCSDEFS.OPC file,
 the system will always start up with the mode you prefer.

 COUNTER OVERFLOWS
 For more info on how counter overflows are handled, see CAM(OPCS).

 HISTORY
 In K1.xx, only 'on' and 'off' were available, which are the
 equivalent of 'large' and 'mocon' respectively in K2.00 and up.

 In version K2.00 the options "small", "nixie", "mocon" and "large"
 were added to make it easier to specify the 4 different counter styles.

 BUGS/LIMITATIONS
 See above regarding display counter overruns.

 In OPCS K1.xx and older, errors detected in OPCSDEFS files do not print
 the line number on which the error was detected.
 In K2.00 and up, errors include the line number.

 ORIGIN
 Gregory Ercolano, Los Feliz California 12/15/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

96

buckle(OPCSDEFS)

BUCKLE(OPCSDEFS) Optical Printer Control System BUCKLE(OPCSDEFS)

 NAME
 buckle - configure the buckle input ports and bit masks

 USAGE
 buckle [port] [mask] [test] [0] # (all values in hex!)

 EXAMPLES
 buckle c 0000 00 00 # No buckle detection for camera chan
 buckle c 03bd 40 40 # LPT1 pin 10, HI bit detects condition
 buckle c 03bd 40 00 # LPT1 pin 10, LO bit detects condition

 DESCRIPTION
 If your system has a buckle sensor switches on the camera or projectors,
 they can be wired to one of the IBM parallel ports to allow the software
 to sense its state.

 A buckle sensor temporarily stops shooting to prevent film jams, should
 the film deviate from its normal path and "buckle" into the sensors.

 Buckle conditions are checked whenever a shooting command is executed
 such as KEY, CAM, REP and SEEK. Buckle conditions are NOT tested when
 linear movement commands such as with GO(OPCS), JOG(OPCS).

 All parameter values are in hexadecimal.

 [port] is the port number in the range 0000-03ff.
 If [port] is 0000, no buckle checking is done for that channel.

 [mask] is applied to the value received from the port
 whenever the software is checking for a viewer open condition.
 This is applied before comparing to [test].

 [test] is compared to the value read from the port after
 [mask] is applied. If the result is the same as [test], a viewer
 open condition exists.

 WIRING CONSIDERATIONS
 Normally you would use an optically isolated interface card for the
 buckle and viewer switches, e.g. PIO-100(DOCS).

 If directly connecting switches to the parallel port, use a separate
 dedicated 5 VDC power supply wired through the switches such that
 when the sensing switch is tripped, +5V is supplied to the computer.

 Such a supply can be a store-bought 5 VDC regulated switching
 transformer, which gives out *exactly* 5VDC. (Avoid older linear
 transformers, as they are often unregulated)

 As with any signal going to the sensing input on a computer, the
 signal should never be open. The signal must pull either 5 volts
 or ground for a TRUE or FALSE condition. Open inputs can act like
 radio antennas that will oscillate randomly.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

97

 If you have noise problems, shielded wire can help mitigate noise.
 Shield ONLY at the power supply end. Ground the shield to chassis
 ground if possible. Keep wire lengths as short as possible.

 If noise problems persist, it may be that the wire is simply too
 long for such a low voltage signal. The PIO-100 uses 12VDC to allow
 for longer cable lengths, and an optoisolator to convert to +5V for
 the parallel port input.

 If noise problems persist, and you have ruled out the computer,
 it may be that the wire is simply too long for such a low voltage
 signal. You may want to use a higher voltage (12 volts) in the
 switch circuitry to drive an optoisolator close to the computer,
 using the optoisolator to switch a 5 volt current to the port.

 You can find the base port value for the parallel ports from the
 operating system using the DOS 'debug' utility:

 C>debug # run 'debug'
 -d40:8 f # enter this (not the '-')
 0040:0008 BC 03 78 03 00 00 00 00 # debug spits this out
 -q ----- ----- # type 'q' to quit debug
 | |
 | LPT #2's port base address
 |
 LPT #1's port base address

 Your machine may show different values. In the case above, 03BC
 is the base port value for LPT1..note the bytes are in reverse
 order in typical LSB/MSB fashion.

 See the PARALLEL() man page which shows the pin out and port addresses
 of the IBM PC's parallel ports.

 BUGS
 None.

 SEE ALSO
 DEENERGIZE(OPCSDEFS) - define port/bit to deenergize motors
 ALLSTOP(OPDSDEFS) - define port/bit to detect the allstop key
 BUCKLE(OPCSDEFS) - define port/bit to detect film buckles
 VIEWER(OPCSDEFS) - define port/bit to detect viewer open
 TRIPSWITCH(OPCSDEFS) - define port/bit to detect trip switches
 SETBIT(OPCSDEFS) - set bit(s) on a port
 CLRBIT(OPCSDEFS) - clear bit(s) on a port
 XORBIT(OPCSDEFS) - invert bit(s) on a port
 PARALLEL(DOCS) - parallel port pinout with port/bit masks
 PIO-100(DOCS) - OPCS Parallel I/O interface board, e.g.
 http://seriss.com/opcs/pio-100/

 ORIGIN
 Version K1.12e+ Gregory Ercolano, Venice California 04/11/98

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

98

clrbit(OPCSDEFS)

CLRBIT(OPCSDEFS) Optical Printer Control System CLRBIT(OPCSDEFS)

 NAME
 clrbit - clear bit(s) on an IBMPC port

 USAGE
 clrbit [port] [mask] [softlatch] # (values hex!)

 EXAMPLES
 clrbit 0378 04 0 # lpt1 port 0378, bit #2 (0x04)
 clrbit 0306 01 1 # kuper logic connector softlatch bit #1

 DESCRIPTION
 This command disables bits on a port based on a bit mask.
 All bits specified in the mask are cleared. All values are in hex.

 [port] is the port number in the range 0000-03ff

 [mask] is a hex byte value indicating the bits
 to be cleared on that port.

 SETBIT(OPCSDEFS) and CLRBIT(OPCSDEFS) can be used in OPCSDEFS.OPC
 to initialize port hardware bits to known states on OPCS startup.

 CAVEATS
 o With [softlatch] set to 1, only ports 0x0000 - 0x07ff are allowed.
 Any ports above 0x07ff with [softlatch] enabled causes an error.

 o External programs changing port bits defined to OPCS with [softlatch]
 (e.g. the kuper logic I/O port) should be aware that OPCS is
 maintaining its own internal latch for that port, and that latch
 won't know about hardware changes made by external programs.

 o Due to these issues, it's best to avoid using hardware that has to
 be latched. It's usually bad hardware practice to make WRITE ONLY
 ports, since different programs cannot co-communicate with them,
 unless some common data area or driver is arranged.

 SEE ALSO
 DEENERGIZE(OPCSDEFS) - define port/bit to deenergize motors
 ALLSTOP(OPDSDEFS) - define port/bit to detect the allstop key
 BUCKLE(OPCSDEFS) - define port/bit to detect film buckles
 VIEWER(OPCSDEFS) - define port/bit to detect viewer open
 TRIPSWITCH(OPCSDEFS) - define port/bit to detect trip switches
 SETBIT(OPCSDEFS) - set bit(s) on a port
 CLRBIT(OPCSDEFS) - clear bit(s) on a port
 XORBIT(OPCSDEFS) - invert bit(s) on a port

 ORIGIN
 Version K1.12d+ Gregory Ercolano, Venice California 03/04/98

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

99

cmdline(OPCSDEFS)

CMDLINE(OPCSDEFS) Optical Printer Control System CMDLINE(OPCSDEFS)

 NAME
 cmdline - set the OPCS command line editing style

 SYNOPSIS
 cmdline [dos|editor]

 dos - Old MS-DOS style command line editing (F1, F3, F5..)
 editor - New interactive command line editing with history

 EXAMPLES
 cmdline dos -- old style command line editing (pre-K200)
 cmdline editor -- enable new interactive command line editor

 DESCRIPTION
 New in K200 and up, this command lets you change the OPCS command
 line to respond to interactive text editing keystrokes, allowing
 Insert/Delete and Left/Right arrows for line editing,
 and Up/Down arrow keys for command history.

 'cmdline dos'

 This is the very old MS DOS style line editing using F2/F3/F5 function
 keys, and left/right arrow keys. It's basically whatever the default
 MS-DOS command line editing provides.

 'cmdline editor'

 This is the new editor style, which supports more interactive line
 editing that people are generally familiar with in interactive
 text editors like MS-DOS 'EDIT', NOTEPAD, etc. Edit keys supported:

 Up Arrow -- previous line in command history (^P)
 Dn Arrow -- next line in command history (^N)
 Lt Arrow -- move reverse one char on current line (^B)
 Rt Arrow -- move forward one char on current line (^F)
 Backspace -- backspace and delete (^H)
 Delete -- delete character (^D)
 Home -- move to start of current line (^A)
 End -- move to end of current line (^E)
 Ctrl-Home -- jump to top of command history
 Ctrl-End -- jump to bottom of command history (current line)
 Ctrl-Left -- word left
 Ctrl-Right -- word right
 ^K -- clear to end of line
 ^U -- clear current line (hit again to 'undo')
 ^V -- enter next character literally
 ESC -- clear current line (hit again to 'undo')
 F3 -- re-type last command
 F4 -- re-run last command (F3 + Enter)

 SEE ALSO
 OPCS(DOCS) -- See section on COMMAND LINE EDIT KEYS
 QUICKREF(DOCS) -- Camera operator tutorial covers editing keys

 ORIGIN
 Gregory Ercolano, Los Angeles, California 08/21/2020

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

100

debugger(OPCSDEFS)

DEBUGGER(OPCSDEFS) Optical Printer Control System DEBUGGER(OPCSDEFS)

 NAME
 debugger - enable OPCS debugging

 SYNOPSIS
 debugger [value]

 EXAMPLE
 debugger 3 # enable somewhat heavy debugging
 debugger 0 # disable all debugging

 DESCRIPTION
 Intended only for debugging the OPCS software during development.
 To view velocities for motor runs, use VELSAV(OPCS) instead.

 EXAMPLE USE
 To capture the voluminous data, start OPCS with output redirected
 to a file, blindly run the commands to test, then quit. Example:

 C:\> opcs > output.log
 ldefs -c debugger 3 <-- type this and hit return
 pro2 5 <-- type this and hit return
 qq <-- type this and hit return
 C:\> more output.log <-- view the debugger output

 Look for "POST MORTEM" in the output which will show a hexdump
 of motor runs. Example:

 A B C D E F G H <-- Channels
 | | | | | | | |
POST MORTEM \|/ \|/ \|/ \|/ \|/ \|/ \|/ \|/
56eb-0000: 000b 0000 0000 0000 0000 0000 0000 0000 \
56eb-0020: 0059 0000 0000 0000 0000 0000 0000 0000 |
56eb-0040: 00a6 0000 0000 0000 0000 0000 0000 0000 |
56eb-0060: 00b2 0000 0000 0000 0000 0000 0000 0000 | Hex dump
56eb-0080: 00df 0000 0000 0000 0000 0000 0000 0000 | of Ring Buffer
56eb-00a0: 00de 0000 0000 0000 0000 0000 0000 0000 |
56eb-00c0: 00de 0000 0000 0000 0000 0000 0000 0000 : __ Indicates
56eb-00e0: 00de 0000 0000 0000 0000 0000 0000 0000 / ROTATION bit
56eb-0100: 50df 0000 0000 0000 0000 0000 0000 0000 <-AS <-ROT Set (in 'A')
56eb-0120: 00de 0000 0000 0000 0000 0000 0000 0000 \
56eb-0140: 00de 0000 0000 0000 0000 0000 0000 0000 __ Indicates ALLSTOP
56eb-0160: 00de 0000 0000 0000 0000 0000 0000 0000 Bit Set (in 'A')
56eb-0180: 00de 0000 0000 0000 0000 0000 0000 0000
56eb-01a0: 00df 0000 0000 0000 0000 0000 0000 0000
56eb-01c0: 00de 0000 0000 0000 0000 0000 0000 0000
56eb-01e0: 00de 0000 0000 0000 0000 0000 0000 0000
56eb-0200: 00de 0000 0000 0000 0000 0000 0000 0000
56eb-0220: 50df 0000 0000 0000 0000 0000 0000 0000 <-AS <-ROT
56eb-0240: 00b2 0000 0000 0000 0000 0000 0000 0000 <-ASADDR
56eb-0260: 00a6 0000 0000 0000 0000 0000 0000 0000 __ Indicates ALLSTOP
56eb-0280: 0059 0000 0000 0000 0000 0000 0000 0000 Address
56eb-02a0: 000b 0000 0000 0000 0000 0000 0000 0000
56eb-02c0: 0000 0000 0000 0000 0000 0000 0000 0000
56eb-02e0: 8000 8000 8000 8000 8000 8000 8000 8000
 TOTAL 0fa0 0000 0000 0000 0000 0000 0000 0000 <- total distance in hex
 TOTAL 4000 0 0 0 0 0 0 0 <- total distance in dec

 WARNING
 When debugging is enabled, software may not control hardware
 correctly due to the volume of data generated.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

101

dirxor(OPCSDEFS)

DIRXOR(OPCSDEFS) Optical Printer Control System DIRXOR(OPCSDEFS)

 NAME
 dirxor - invert direction of motor; direction "exclusive or" (XOR)

 SYNOPSIS
 dirxor [chan] [invert]

 EXAMPLE
 dirxor b 1 # invert direction of the projector motor.
 dirxor c 1 # invert direction of the camera motor.

 DESCRIPTION
 After setting up a new motor, you notice that executing a command that
 should run the motor forward actually runs it BACKWARDS, and vice-
 versa. You can remedy this by either rewiring the motor (the hard way),
 or changing the DIRXOR(OPCSDEFS) command in your OPCSDEFS.OPC file.

 By changing the [invert] value from 0 to 1 (or 1 to 0, as the case
 may be) you can invert the software's sense of direction for that motor.

 [chan] is the motor channel being affected.

 [invert] can be either a 0 (default) or a 1, depending on which value
 suits the installation.

 BUGS
 None.

 ORIGIN
 Gregory Ercolano, Los Feliz California 11/29/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

102

doscmd(OPCSDEFS)

DOSCMD(OPCSDEFS) Optical Printer Control System DOSCMD(OPCSDEFS)

 NAME
 doscmd - define DOS commands that don't need the '!' prefix

 USAGE
 doscmd [command]

 EXAMPLES
 doscmd dir # 'dir' command doesn’t need the '!' prefix
 doscmd man # 'man' command
 doscmd -clear # clears all 'doscmd' definitions (K2.02+)

 DESCRIPTION
 This command allows execution of commonly used DOS commands within
 OPCS without the need for using the '!' prefix.

 Assuming 'doscmd dir' has been defined, you can then type 'dir'
 or 'dir *.run' or 'dir *.run /w' without needing the '!' prefix.

 When the command you defined is invoked from OPCS, all arguments
 to the right of the command up to the end of line are passed as
 arguments to the DOS command. Comment characters ('#') can be used:

 dir *.run /w | more # comment text can appear here

 In the above example, 'dir *.run /w | more' is passed to DOS,
 and the comment character and text will be ignored.

 The -clear option clears all previous doscmd definitions.

 LIMITS
 The user may define up to 30 such commands, each command having a
 10 character limit. The command itself should be in the current
 directory or in the execution PATH if it is an 'EXE' or 'COM'
 program. Refer to your DOS manual for setting execution paths.

 GOTCHYAS
 This command can seem really nice at first, but it does have
 drawbacks.

 o RUN scripts containing commands that are really DOSCMD
 definitions will fail on other OPCS systems that don't
 have the same DOSCMD definitions. For portability, use
 the '!' prefix instead of assuming DOSCMD's have been defined.

 o ALL arguments to the right of the DOS command will be passed
 as arguments for the command. This means you cannot 'stack'
 other DOS or OPCS commands on the same line. If you really
 need to stack commands after a DOS command, use "!" instead.

 HISTORY
 The -clear option was added in K2.02

 SEE ALSO
 !(OPCS) - execute a dos command
 RUNCMD(OPCSDEFS) - define your own OPCS command as a RUN script

 ORIGIN
 Gregory Ercolano, Los Feliz California 04/08/91

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

103

echo(OPCSDEFS)

ECHO(OPCSDEFS) Optical Printer Control System ECHO(OPCSDEFS)

 NAME
 echo - enable/disable echoing of certain defs commands

 USAGE
 echo [on|off]

 EXAMPLES
 echo on # enable echoing
 echo off # disable echoing

 DESCRIPTION
 Some opcsdefs commands (such as '!') echo messages to the screen.
 In cases where this is not desirable, 'echo off' can be used
 to disable this.

 Also, '@' can be used to prefix any command, to disable its echoing.
 '@' only affects the command it precedes.

 ORIGIN
 Added K1.12d+ Gregory Ercolano, Venice California 04/09/98

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

104

faderdisplay(OPCSDEFS)

FADERDISPLAY(OPCSDEFS) Optical Printer Control System FADERDISPLAY(OPCSDEFS)

 NAME
 faderdisplay - Enable/Disable display of fader position counter

 USAGE
 faderdisplay [on|off]

 EXAMPLES
 faderdisplay on # show fader position
 faderdisplay off # don't show fader position

 DESCRIPTION
 Some printer systems do not have motorized faders. This command
 disables the fader counter to avoid confusing camera operators.

 ORIGIN
 K1.12f+ Gregory Ercolano, Venice California 05/14/98

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

105

filter(OPCSDEFS)

FILTER(OPCSDEFS) Optical Printer Control System FILTER(OPCSDEFS)

 NAME
 filter - define the channel that controls the filter wheel

 USAGE
 filter [chan] [tvels] [vels]

 EXAMPLES
 filter h 8 4 10 16 20 20 16 10 4
 | | ---------------------
 | | |
 | | The 8 velocity samples sent to the motor,
 | | including ramping. Sum is 100.
 | |
 | 8 velocity samples
 |
 Channel with filter wheel

 DESCRIPTION
 This command defines which channel controls a 'wedge wheel', or
 'filter wheel'. These settings configure the AUTOFILT(OPCS) command.

 Most filter wheels usually have 20 filters. If the controlling motor
 is 2000 pulses per revolution, and the motor is geared 1:1, then it
 would take 100 pulses to move the motor 1 filter position.

 [chan] is the channel controlling the filter wheel.

 [tvels] is the number of velocity samples specified.

 [vels] are the velocity samples. These values are the
 raw speed values (velocities) sent to the motor. These values
 should smoothly ramp up then back down. The sum of these values
 should be the number of pulses to move to the next filter position.

 These values are configured by hand, since the idea is to get the
 motor to move to the next position in as little time (as few values)
 as possible, without stalling the motor. At the fastest camera
 speed, you will want the filter wheel to be at rest while the
 camera is exposing film.

 NOTES
 When AUTOFILT(OPCS) is enabled, the filter wheel will begin moving
 after each camera frame exposes, at the moment the camera shutter
 has completely closed. This is determined by the MRP(OPCSDEFS) value.

 If you find the filter wheel starts its movement while the shutter
 is still open, you should either decrease the MRP(OPCSDEFS) value,
 or make sure your home position for the shutter is accurate.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

106

 The following diagram shows the travel of the camera shutter through
 a full rotation, from left to right. The numbers indicate the pulses
 throughout the rotation of a shutter that is 2000 pulse per rev:

 OPEN -- __________
 / \
 / \
 / \
 CLOSED -- ____________/ ___________
 | | | | |
 0 500 1000 1500 2000

 If MRP(OPCSDEFS) is 500, then the AUTOFILT command will begin
 moving the filter wheel at the 1500 position, ie. 2000 - 500.
 The shutter should be fully closed at that position.

 If you decrease the MRP(OPCSDEFS) value to 400, AUTOFILT will begin
 moving the filter wheel at the 1600 position, i.e. 2000 - 400.

 SEE ALSO
 AUTOFILT(OPCS) - enable auto-wedging with a filter wheel
 MRP(OPCSDEFS) - maximum ramp pulses for shutter motors

 ORIGIN
 Version K1.12e+ Gregory Ercolano, Venice California 04/10/98

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

107

flog(OPCSDEFS)

FLOG(OPCSDEFS) Optical Printer Control System FLOG(OPCSDEFS)

 NAME
 flog - configure fader's logarithmic movement

 SYNOPSIS
 flog [value] # value is a signed floating point number
 # (-2.0 is recommended for NORMAL fades)

 DESCRIPTION
 Sets characteristics of log function used to calculate fades. This
 command lets you harden the log curve, or 'soften' it to almost linear.

 Values for FLOG are normally negative, since it is usually desirable
 to have a sharper curve on the OPEN end of a fade.

 In the NEGATIVE range, FLOGs that approach -1.0 force the curve to
 become more linear, whereas values that approach -10000 (lowest value
 recommended) harden the fading curve on the OPEN end (normal).

 In the POSITIVE range, FLOGS that approach 1.0 force the curve to
 become more linear, whereas values that approach 10000 (highest value
 recommended) harden the fading curve on the CLOSED end (giving a comical
 'zip' to/from black).

 Values between -1.0 and 0.0 (and values between 1.0 and 0.0) cause
 a linear fade, which is more or less a DISSOLVE.

 TABLE OF FLOG VALUES AND THEIR EFFECT ON A 12 FRAME FADE

 <---- FLOG VALUES ---->
 FRM | -50 | -20 | -5 | -2 | 2 | 5 | 20 | 50
 ----|--------|--------|--------|--------|--------|--------|--------|-------
 1 | 3.70 | 4.68 | 7.29 | 10.44 | 19.63 | 30.39 | 53.86 | 70.66
 2 | 7.75 | 9.78 | 15.12 | 21.34 | 37.81 | 53.96 | 80.99 | 96.28
 3 | 12.21 | 15.39 | 23.57 | 32.75 | 54.73 | 73.22 | 99.26 | 112.29
 4 | 17.19 | 21.61 | 32.76 | 44.72 | 70.56 | 89.50 | 113.07 | 123.96
 5 | 22.81 | 28.60 | 42.83 | 57.30 | 85.43 | 103.60 | 124.16 | 133.16
 6 | 29.26 | 36.57 | 53.96 | 70.56 | 99.44 | 116.04 | 133.43 | 140.74
 7 | 36.84 | 45.84 | 66.40 | 84.57 | 112.70 | 127.17 | 141.40 | 147.19
 8 | 46.04 | 56.93 | 80.50 | 99.44 | 125.28 | 137.24 | 148.39 | 152.81
 9 | 57.71 | 70.74 | 96.78 | 115.27 | 137.25 | 146.43 | 154.61 | 157.79
 10 | 73.72 | 89.01 | 116.04 | 132.19 | 148.66 | 154.88 | 160.22 | 162.25
 11 | 99.34 | 116.14 | 139.61 | 150.37 | 159.56 | 162.71 | 165.32 | 166.30
 12 | 170.00 | 170.00 | 170.00 | 170.00 | 170.00 | 170.00 | 170.00 | 170.00

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

108

 Or as a graph:

 FLOG=-50
 Frame (Slow Close/Fast Open)

 12 : x
 11 : x
 10 : x
 9 : x
 8 : x
 7 : x
 6 : x
 5 : x
 4 : x
 3 :x
 2 :x
 1 o.................................o
 Fader Position
 CLOSED OPEN

 FLOG=-1 through 1
 Frame (Linear Close/Open)

 12 : x
 11 : x
 10 : x
 9 : x
 8 : x
 7 : x
 6 : x
 5 : x
 4 : x
 3 : x
 2 : x
 1 x.................................o
 Fader Position
 CLOSED OPEN

 FLOG=50
 Frame (Fast Close/Slow Open)

 12 : x
 11 : x
 10 : x
 9 : x
 8 : x
 7 : x
 6 : x
 5 : x
 4 : x
 3 : x
 2 : x
 1 x....................................o
 Fader Position
 CLOSED OPEN

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

109

 BUGS
 FLOG values above 10000 or below -10000 blow out the software with a
 range error when you try to shoot a fade. Keep values out of this range.

 Versions prior to K1.16 did not handle values between -1 and 1
 correctly, i.e. did not generate a linear curve. Fixed in K2.00 (Aug 2020)

 SEE ALSO
 OPCS Commands
 CAM(OPCS) - shoot camera (fades/dissolves too)
 OPN(OPCS), CLS(OPCS) - open/close fader shutter
 SHU(OPCS) - move fader to an absolute position in degrees
 DXI(OPCS), DXO(OPCS) - set up dissolve in/out
 FDI(OPCS), FDO(OPCS) - set up fade in/out

 OPCSDEFS Commands
 FLOG(OPCSDEFS) - set Fader LOGarithmic curve for custom fades
 FRANGE(OPCSDEFS) - set fade/dx's degrees range (for Hicon film stocks)
 INTERP(OPCSDEFS) - set interpolation positions (fader, focus, etc)
 SLOP(OPCSDEFS) - correct for slop in a motor (fader, focus, etc)

 General
 MATH(DOCS) - math expressions (for use in frame specifications)
 SYNTAX(DOCS) - online calculator and OPCS math expression syntax

 ORIGIN
 Gregory Ercolano, Los Feliz California 12/14/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

110

fpf(OPCSDEFS)

FPF(OPCSDEFS) Optical Printer Control System FPF(OPCSDEFS)

 NAME
 fpf - configure 'frames per foot' for a shutter motor

 SYNOPSIS
 fpf [chan] [frames per foot]

 EXAMPLE
 fpf a 8 # aerial projector is Vistavision (8 frms/ft)
 fpf b 16 # main projector is 35mm (16 frms/ft)
 fpf c 40 # camera is 16mm (40 frms/ft)
 fpf c 0 # disable foot/frames counters for camera (K2.02+)

 DESCRIPTION
 Sets the number of frames in a foot of film for each axis. This value
 is used by the camera/projector counters to calculate for the
 feet/frames display, as well as how to interpret expressions
 such as cam 12'0.

 [chan] is the motor channel being configured.

 [frames per foot] may be any integer value that specifies
 the number of frames per foot of film. In K2.02 and up, this value
 can be '0' to disable the feet/frames counter in the display.

 BUGS
 In versions older than K2.02, an FPF value of 0 was unsupported
 and would blow out the software with a DIVISION BY ZERO error.

 Also, floating point values (such as .5) are not valid arguments
 for the FPF command.

 ORIGIN
 Gregory Ercolano, Los Feliz California 11/29/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

111

frange(OPCSDEFS)

FRANGE(OPCSDEFS) Optical Printer Control System FRANGE(OPCSDEFS)

 NAME
 frange - configure the open/close positions for fades/dissolves

 USAGE
 frange [close] [open] # values are in degrees

 EXAMPLES
 frange 0 170 # normal for a 170 degree shutter

 frange 90 130 # for special Hicon film stocks
 # (fades/dissolves go from 90 to 130
 # degrees)
 DESCRIPTION
 FRANGE(OPCSDEFS) allows the user to specify the open and closed
 positions [in degrees] for the FADE/DISSOLVE commands.

 NOTES

 ** This command does NOT affect the OPN/CLS commands, which still go **
 ** full open/full closed. **

 The fader must be in the correct start position for a fade/dissolve
 to occur without giving an error. If the FRANGE is set to 90/150,
 then the fader must be at 90 degrees before doing a FDI/DXI, and
 150 degrees before doing a FDO/DXO.

 **
 ** Use the 'shu' command to correctly position the fader before **
 ** doing a fade/dissolve with a custom FRANGE configured. **
 **

 EXAMPLE USE
 By wedging the fader positions, you can find at what points light
 becomes exposed on the film. You can then set the FRANGE parameters
 to the low and high values that you find from wedging. You can then
 make two small scripts that turn the special fade/dissolve setup
 on and off. Make the following two files:

 *** 0-170.RUN ***

 @# ENABLE NORMAL FADES AND DISSOLVES (0-170)
 @! echo frange 0 170 > foo.defs ! ldefs foo.defs
 @! echo FADES/DISSOLVES NOW RUN FROM 0 TO 170 DEGREES

 *** 90-150.RUN ***

 @# ENABLE SPECIAL FADES/DXS (90=closed, 150=open)
 @! echo frange 90 150 > foo.defs ! ldefs foo.defs
 @! echo FADES/DISSOLVES NOW RUN FROM 90 TO 150 DEGREES

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

112

 You then need only to run the appropriate script before shooting:

 run 90-150.run # setup new fader values
 shu 90 # (fader starts in new position)
 fdi 12 rep 12 # shoot 12 frame fadein using 90-150
 rep 200 # (fader is at 150 for rest of shoot)
 dxo 24 rep 12 # dissolve out from 150 to 90 degrees
 cls cam 120 # (closes fader to 0 for windoff)
 run 0-170.run # Go back to normal fades/dissolves

 BUGS
 none reported.

 SEE ALSO
 OPCS Commands
 CAM(OPCS) - shoot camera (fades/dissolves too)
 OPN(OPCS), CLS(OPCS) - open/close fader shutter
 SHU(OPCS) - move fader to an absolute position in degrees
 DXI(OPCS), DXO(OPCS) - set up dissolve in/out
 FDI(OPCS), FDO(OPCS) - set up fade in/out

 OPCSDEFS Commands
 FLOG(OPCSDEFS) - set Fader LOGarithmic curve for custom fades
 FRANGE(OPCSDEFS) - set fade/dx's degrees range (for Hicon film stocks)
 INTERP(OPCSDEFS) - set interpolation positions (fader, focus, etc)
 SLOP(OPCSDEFS) - correct for slop in a motor (fader, focus, etc)

 General
 MATH(DOCS) - math expressions (for use in frame specifications)
 SYNTAX(DOCS) - online calculator and OPCS math expression syntax

 ORIGIN
 Gregory Ercolano, Los Feliz California 04-21-92

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

113

hardware(OPCSDEFS)

HARDWARE(OPCSDEFS) Optical Printer Control System HARDWARE(OPCSDEFS)

 NAME
 hardware - enable/disable using printer hardware

 SYNOPSIS
 hardware [yes or no]

 DESCRIPTION
 'hardware no' will disable writing to ports on the PC, as well as
 all motor running routines that deal with the kuper card hardware.
 'hardware no' is useful only to use the printer software in a minimal
 way if the kuper card is not present.

 For normal use when the system is supposed to drive an optical printer,
 this command should be 'hardware yes'.

 BUGS
 none.

 SEE ALSO
 MOTORS(OPCS) - run script debugging command

 ORIGIN
 Gregory Ercolano, Los Feliz California 11/29/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

114

interp(OPCSDEFS)

INTERP(OPCSDEFS) Optical Printer Control System INTERP(OPCSDEFS)

 NAME
 interp - configure channel position interpolations

 SYNOPSIS
 interp [chan] [master] [low] [high] [total] [samples]

 EXAMPLES
 interp d - 0 170 18 0 1500 2500 3200 3900 4500 5080 5620 6130
 6670 7120 7630 8110 8550 9010 9470 9930 10340

 interp F E 0 12000 13 0 10 20 30 40 50 60 70 80 90 100 110 120
 |
 Note that 'e' channel the master zoom, and 'f'
 is the follow focus.

 interp d - 0 0 0 # Disable any previous interp for 'd'

 DESCRIPTION
 INTERP allows a channel to be interpolated into a sampled curve, or
 to slave to another channel using interpolation into a sampled curve.

 [chan] is the channel that is going to have the
 interpolation defined to it.

 [master] is channel name of a master channel, such as
 in a zoom/follow focus relationship where the zoom is the master
 to the follow focus channel. In such a case, the position of the
 focus channel is a function of the position of the zoom channel.
 If mastering is not desired (such as with the fader), specify '-'.

 [low] [high] These indicate the low and high range of the
 'requested' positions that will be asked of this channel. These can
 be floating point values.

 [total] This indicates how many sample points make up the
 interpolation curve.

 NOTE: If [total] is '0', this will cancel any previous
 INTERP(OPCSDEFS) specifications for this channel.

 [samples] are the sample positions. Start with the [low]
 samples, and work up towards the [high] samples. Each sample
 position should be separated by white space (tabs, spaces, CRLFs)
 and there should be as many samples as specified by [total].

 OVERVIEW
 When an INTERP command is set up on a channel, it is like defining
 a look up table through which each position request is converted
 to a new position, according to the value found in the lookup table.

 Requests that fall between values in the lookup table are computed
 as a linear interpolation between the two lookup values. When enough
 points are supplied to the lookup table, very complex functions can
 be defined and approximated (to the point where error is negligible).
 Follow focus curves can be defined quite well with just a few dozen
 sample positions. Nonlinear mechanics can be compensated for, such
 as faders that have built in logarithmic motion, so the computer can
 control it in a linear fashion (such as for cross dissolves).

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

115

 HOW INTERP WORKS

 ===
 = =
 = interp a - 10 30 3 1000 2000 9000 =
 = | | | | | =
 = | | | | Last sample position =
 = | | | First sample position =
 = | | Total samples =
 = | High =
 = Low =
 ===
 Figure A.

 ===
 = Requested Clipping Samples Resulting =
 = Positions Window Positions =
 = =
 = | =
 = 0 ----------> | ----> 1000 =
 = 5 ----------> | LOW = 10 /-----> 1000 =
 = 10 ----------------------------> 1000 ------> 1000 =
 = 15 ----------------------------> ------> 1500 =
 = 20 ----------------------------> 2000 ------> 2000 =
 = 25 ----------------------------> ------> 5500 =
 = 30 ----------------------------> 9000 ------> 9000 =
 = 35 ----------> | HIGH = 30 \-----> 9000 =
 = 40 ----------> | ----> 9000 =
 = | =
 = =
 ===
 Figure B.

 The 'Requested Positions' are the positions the operator wants the
 motors to move to. The 'Resulting Positions' are the values that
 are actually sought by the motors. What happens in between is
 caused by the INTERP command (Figure A).

 Requested positions are clipped into the range LOW and HIGH.
 Values less than LOW are made LOW. Values above HIGH are made
 HIGH.

 Once clipped, the values are stretch-fitted according to the
 samples supplied. Note how linear interpolation is used to
 compute the lookup for '15', which falls between the two samples
 1000 and 2000, translating to 1500.

 FADER INTERPOLATIONS
 The software can be set up to account for weird (nonlinear) hardware
 such as in a fader. A sample point is supplied for every 10 degrees
 on the fader. The samples represent the actual motor positions for
 every 10 degrees in the fader. The following is an actual example for
 a 120 degree fader:

 interp D - 0 120 13 0 -260 -365 -450 -515 -585 -645
 -705 -760 -815 -860 -910 -970

 Note how the LOW and HIGH values are set to 0 and 120. This way a
 request for 120 will actually move the fader to its open position
 which is the actual position of -970, and 0 will move the fader to
 its actual position of zero.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

116

 The samples are nonlinear, and represent the number of steps for
 every 10 degrees in the fader. These points were found by first
 disabling any INTERPs on the fader, and then moving the motor several
 pulses at a time, taking note of the step position every time the fader
 hit a 10 degree mark.

 FADER SETUP
 Assuming you have a fader with some sort of logarithmic mechanical
 rig, you need to follow this procedure to set up your fader properly
 to counteract the built in logarithmic movement (for proper dissolves).

 o Make sure there is no INTERP command already set up on the fader
 in the OPCSDEFS.OPC file. If there is, comment it out with '#', and
 rerun the software, or disable it by typing the following:

 ldefs con
 interp d - 0 0 0 # cancels interpolations
 ^Z # (control-Z and return)

 o Check for any significant mechanical slop in the fader:

 Using the JOG command, move the motor forward. Now change
 directions, stepping the motor a small amount at a time. Make
 note of how many pulses it takes before the fader actually starts
 moving in the other direction. If it begins moving immediately,
 there is no need to set up slop correction for the fader. If
 there is a great deal of slop, refer to SLOP(OPCSDEFS) to setup
 slop correction before continuing with this procedure.

 o Before continuing, you will need to have an accurate idea of the
 degree positions of the fader. For truly accurate measurement, you
 should remove the front of your camera, and using a protractor,
 put scribe marks for every 10 degrees along the outer edge of the
 fader's shutter. Using a scribe on the camera body as a pointer,
 you should be able to find each 10 degree position accurately.

 o Use JOG(OPCS) to position the fader to the CLOSED position. Move in
 small steps until you get the fader properly closed, which usually
 involves overlapping the fader/shutter blades a little. Avoid
 changing direction when finding the position to minimize slop errors.

 o Now, reset the fader's counter to zero. You can do this from within
 JOG, or by executing:

 reset d 0

 o Now, slowly JOG the fader shutter to each 10 degree mark (10,20..).
 Each time the fader hits a 10 degree mark, write down the motor
 position from the display.

 Avoid going too far, and especially avoid changing direction. If you
 screw up by going too far, start over from the beginning with the
 shutter CLOSED.

 o If you have a 170 degree fader, you will have 18 values (including
 '0' for the 0 degrees position). Using a text editor, make an INTERP
 command for the fader that contains all the samples you just found:

 interp d - 0 170 18 0 112 153 278 475 ...
 | | ----------------------
 | | |
 | | The samples you found. (include 0)
 | |
 | Total samples you found. (including 0)
 |
 The number of degrees in your fader.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

117

 If there are more samples then can fit on a line, you can let them
 wrap around the screen, or embed carriage returns and tabs for
 readability.

 * * *

 You should now be able to start up the OPCS software, and position
 the motor to correct positions with the SHU(OPCS) command, i.e.
 shu 50 should send the shutter to the 50 degree position.

 Dissolves and fades should also work properly now.

 If your fader mechanics suffers from slop, e.g. if the fader slips
 when it changes direction, refer to the SLOP(OPCSDEFS) command for
 ways to overcome mechanical slop.

 BUGS
 If you have very few pulses between an OPEN and CLOSED shutter,
 you may experience 'rounding' problems in the display, i.e.
 using shu 50.5 may actually send the shutter to 50.1 or some such
 deviation because your hardware may not have enough resolution to
 actually achieve 50.5.

 SEE ALSO
 SHOW(OPCS) - show current positions for all motors
 JOG(OPCS) - interactively jog a motor to positions
 GO(OPCS) - move motors some distance or to new positions
 SHU(OPCS) - send fader to absolute positions in degrees
 SLOP(OPCSDEFS) - overcome mechanical slop, esp. faders

 ORIGIN
 Gregory Ercolano, Los Feliz California 12/20/90

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

118

jogstep(OPCSDEFS)

JOGSTEP(OPCSDEFS) Optical Printer Control System JOGSTEP(OPCSDEFS)

 NAME
 jogstep - set the jog mode's 'vernier' and 'crawl' step rate

 USAGE
 jogstep [vsteps] [csteps]

 where:
 [vsteps] is the number of steps per keypress in vernier modes.
 [csteps] is the number of steps per keypress in crawl modes.

 EXAMPLES
 jogstep 5 50 # recommended for microstepper systems
 jogstep 1 10 # recommended for half stepper systems

 DESCRIPTION
 JOGSTEP(OPCSDEFS) lets you tailor the number of steps moved per
 keypress when in the jog mode. Higher values make the motor move more
 per keypress, smaller values make movement more accurate (and slow).

 SEE ALSO
 JOG(OPCS) - jog motors interactively

 ORIGIN
 Gregory Ercolano, Los Feliz California 08/25/91

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

119

keyfunc(OPCSDEFS)

KEYFUNC(OPCSDEFS) Optical Printer Control System KEYFUNC(OPCSDEFS)

 NAME
 keyfunc - lets user define keys in KEY(OPCS) and JOG(OPCS)

 USAGE
 keyfunc -clear "function"
 keyfunc -add "function" port mask test port mask test
 -------------- --------------
 | |
 | Button release
 Button down

 "function" is either the name of an internal function (see below)
 or an opcs command string. In the case of -clear, "function" can
 be "all", to clear all previously defined functions.

 When binding a port/bit mask to an OPCS function or OPCS command
 string, one specifies the port/bits for both 'button down' and
 'button release'.

 DESCRIPTION
 This command allows the user to define the keyboard keys used in
 KEY(OPCS) mode. The user can actually assign the operations to
 not only any keys on the keyboard, but any bit on any port on
 the IBM PC.

 This allows for external buttons to control bits on the parallel port
 (or whatever ports are available) and thus control any of the functions
 supported by the KEY(OPCS) command.

 A maximum of 200 keyboard functions can be defined with 'keyfunc'.

 The following is a list of all functions the KEY(OPCS) command
 currently supports, plus some custom definitions. Normally, these
 commands would appear in the OPCSDEFS.OPC setup file:

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

120

 The following shows all the built-in functions, and show examples
 of how to define custom commands.

CLEAR ALL FUNCTIONS FIRST
Start with a completely clean slate.
#
keyfunc -clear "all"

DEFINE ALL THE 'BUILTIN' OPCS FUNCTIONS
These names are the names of built in operations in OPCS,
whose operation should be obvious. These are all assigned
to keyboard scan codes. Comments at right describe what the
scan codes are.
#
OPCS FUNCTION KEY DOWN KEY RELEASE
------------- ---------- -----------
keyfunc -add "quit" 0060 ffff 01 0060 80 80 # ESC
keyfunc -add "pro2fwdslew" 0060 ffff 3b 0060 80 80 # F1
keyfunc -add "pro2revslew" 0060 ffff 3c 0060 80 80 # F2
keyfunc -add "pro2fwd1" 0060 ffff 3d 0060 80 80 # F3
keyfunc -add "pro2rev1" 0060 ffff 3e 0060 80 80 # F4
keyfunc -add "pro1fwdslew" 0060 ffff 3f 0060 80 80 # F5
keyfunc -add "pro1revslew" 0060 ffff 40 0060 80 80 # F6
keyfunc -add "pro1fwd1" 0060 ffff 41 0060 80 80 # F7
keyfunc -add "pro1rev1" 0060 ffff 42 0060 80 80 # F8
keyfunc -add "camfwdslew" 0060 ffff 43 0060 80 80 # F9
keyfunc -add "camrevslew" 0060 ffff 44 0060 80 80 # F10
keyfunc -add "camfwd1" 0060 ffff 57 0060 80 80 # F11
keyfunc -add "camrev1" 0060 ffff 58 0060 80 80 # F12
keyfunc -add "rep+1" 0060 ffff 02 0060 80 80 # 1
keyfunc -add "rep-1" 0060 ffff 03 0060 80 80 # 2
keyfunc -add "repset" 0060 ffff 04 0060 80 80 # 3
keyfunc -add "pro2set" 0060 ffff 05 0060 80 80 # 4
keyfunc -add "pro1set" 0060 ffff 06 0060 80 80 # 5
keyfunc -add "camset" 0060 ffff 07 0060 80 80 # 6
keyfunc -add "fdiset" 0060 ffff 08 0060 80 80 # 7
keyfunc -add "fdoset" 0060 ffff 09 0060 80 80 # 8
keyfunc -add "dxiset" 0060 ffff 0a 0060 80 80 # 9
keyfunc -add "dxoset" 0060 ffff 0b 0060 80 80 # 0
keyfunc -add "cls" 0060 ffff 0c 0060 80 80 # -
keyfunc -add "opn" 0060 ffff 0d 0060 80 80 # =
keyfunc -add "seek" 0060 ffff 0e 0060 80 80 # BS

DEFINE SOME CUSTOM OPCS COMMANDS
These are not builtin functions, but are simply run as opcs commands.
You can run OPCS scripts, and invoke DOS commands (if prefaced with "!")
#
keyfunc -add "home" 0060 ffff 004e 0060 0080 0080 # Num +
keyfunc -add "load" 0060 ffff 0037 0060 0080 0080 # Num *
keyfunc -add "run myscript.run" 0060 ffff 004a 0060 0080 0080 # Num -

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

121

 MONITORING THE KEYBOARD
 Since the keyboard is mapped to port 0060, any key on the keyboard
 can be bound to an OPCS function, e.g.

 keyfunc "function_name" 0060 <mask> <test> 0060 <mask> <test>
 ------------------ ------------------
 Detect Key Press Detect Key Release

 The <port>, <mask>, and <test> values are all specified in hexadecimal.

 (New in K2.20TC): To support extended keycodes, the <mask> and <test>
 values can now be 16 bit (4 digit hex) values. OPCS now treats the
 keyboard (port 0060) as a special case, where extended keycodes have
 the high byte set to E0 (e.g. E0##), and regular keycodes have
 the high byte set to 00 (e.g. 00##) for "normal" keys.

 To detect a KEY DOWN, use FFFF as the 'mask', and the 16bit scan code
 value as the 'test' value. Single byte scancodes will be 00##,
 extended scancodes will be E0##.

 To test for KEY RELEASE, use 0080 as both 'mask' and 'test' value,
 since all key release codes have the 0080h bit set.

 So for example, to program the "F1" key which generates 003B on press
 and 00BB on release:

 # OPCS FUNCTION PORT MASK TEST PORT MASK TEST
 # -------------- ---- ---- ---- ---- ---- ----
 keyfunc -add "pro2fwdslew" 0060 ffff 003b 0060 0080 0080

 ..and to detect e.g. the "PrntScrn" key which generates E0 4A
 when a key is pressed, and E0 CA on release, this works:

 # OPCS FUNCTION PORT MASK TEST PORT MASK TEST
 # -------------- ---- ---- ---- ---- ---- ----
 keyfunc -add "load" 0060 ffff e04a 0060 0080 0080
 __/
 16bit extended scancode
 with E0 in high byte

 GENERAL PORT MONITORING
 A single function, such as "pro1fwdslew", can be assigned to more
 than one port/bit combination, allowing several ways to access the
 same function. For example, you may want to have both keyboard and
 external buttons to slew the projector forward.

 For a list of all the keyboard scan codes, refer to an IBM PC technical
 manual, or run "! key" from the DOS prompt to run the KEY.EXE program,
 which prints the hexadecimal scancodes for any key you hit.
 Hit ESC to exit the KEY.EXE program.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

122

 CONTINUOUS SWITCH
 The 'BUTTON RELEASE' port/mask/test definitions define the IBM PC port
 to monitor to determine when the key is released. This can optionally
 be defined to monitor a 'continuous' switch, so that the motors will
 stop when the continuous switch is released:

 keyfunc -add "profwd1" 03bd 40 40 03bd 41 00

 The above monitors port 0x03bd for the 0x40 bit. When set, the motor
 will run until the 0x40 and the 0x01 bit of the same port are zero.
 In this case, the 0x40 bit is probably the invoking button, and the
 0x01 bit is the 'continuous' switch; if on, the motor will run until
 the continuous switch is turned off, even if the 0x40 bit is released.

 BUGS/CAVEATS
 If you use keyfunc -clear "all", you must at LEAST declare the
 quit key. If you don't, you will have no way to break out of the
 KEY(OPCS) or JOG(OPCS) modes.

 When using keyfunc to invoke an OPCS command string, the command
 should not exceed 256 characters. If you want a single keystroke
 to invoke many commands, make a script, then have the keyfunc
 definition run the script, e.g.:

 keyfunc -add "run fancy.run" 0379 80 80 0379 80 00

 SEE ALSO
 KEY(OPCS) - use keys to run motors
 JOG(OPCS) - jog motors interactively
 DEENERGIZE(OPCSDEFS) - define port/bit to deenergize motors
 ALLSTOP(OPDSDEFS) - define port/bit to detect the allstop key
 BUCKLE(OPCSDEFS) - define port/bit to detect film buckles
 VIEWER(OPCSDEFS) - define port/bit to detect viewer open
 TRIPSWITCH(OPCSDEFS) - define port/bit to detect trip switches
 SETBIT(OPCSDEFS) - set bit(s) on a port
 CLRBIT(OPCSDEFS) - clear bit(s) on a port
 XORBIT(OPCSDEFS) - invert bit(s) on a port

 ORIGIN
 Gregory Ercolano, Venice California 04/18/98

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

123

logcounter(OPCSDEFS)

LOGCOUNTERS(OPCS) Optical Printer Control System LOGCOUNTERS(OPCS)

 NAME
 logcounters - configure if cam/pro counters should be logged

 SYNOPSIS
 logcounters [on/off]

 EXAMPLES
 logcounters on # log files will contain counter info
 logcounters off # DON'T put counter info into log files

 DESCRIPTION
 When LOGCOUNTERS is on, and a LOG(OPCS) command is logging out to a
 file or line printer, the motor positions are logged along with each
 line the operator types. The positions are entered into the file as
 comments, so when executed, the position information is ignored.

 The format of how the counters are logged is configured with
 LOGFORMAT(OPCSDEFS).

 This information may be necessary for debugging purposes, but in most
 cases just 'clutters up' an otherwise easy to read file, and it may
 be desirable to leave this setting off when logging to files.

 BUGS
 If the operator uses ALLSTOP during command logging, it would be
 unwise to later execute the log file as a run script without making
 the proper modifications to the commands that were interrupted. Here
 is a sample log with a command that was interrupted:

 # 1:1 0(0'0) 20(1'4) CLOSED 0
 cam -120

 # ### OPERATOR HIT ALLSTOP KEY
 # 1:1 0(0'0) 18(1'2) CLOSED 0

 Note the camera counter now reads 18 instead of -100. Because the
 command was interrupted, it never got to finish shooting. This
 could cause confusion later if this log were executed as a RUN script,
 and commands that followed used absolute positioning (cam >134).
 The command cam -120 should then modified by hand:

 cam >18 or cam -2

 ...to reflect the command as it was actually executed.

 SEE ALSO
 LOG(OPCS) - log all commands entered by the user
 RUN(OPCS) - run a log file
 LOGCOUNTERS(OPCSDEFS) - enable/disable logging counters to logfiles
 LOGFORMAT(OPCSDEFS) - formats how values are printed to logfile

 ORIGIN
 Gregory Ercolano, Los Feliz California 12/15/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

124

logformat(OPCSDEFS)

LOGFORMAT(OPCSDEFS) Optical Printer Control System LOGFORMAT(OPCSDEFS)

 NAME
 logformat - format how counters appear in log files

 SYNOPSIS
 logformat string

 EXAMPLES
 logformat \# %0ar:%0br:%0cr %13aF %13bF %13cF %0dS\n
 logformat \# Camera Count=%13cF, Command:

 An example output using the above format string might yield the
 following in the log file:

 # 0:1:1 26(1'10) 0(0'0) 0(0'0) 170.00
 ----- -------- ------ ------ ------
 | | | | |
 | | | | |
 Ratio Aerial Main Camera Fader
 Counter Counter Counter Position

 DESCRIPTION
 When the camera operator enables LOG(OPCS) and LOGCOUNTERS(OPCSDEFS)
 is enabled, LOGFORMAT(OPCSDEFS) sets the format string used to
 determine how the counters are printed in the logs.

 The format string can contain 'format sequences' which are replaced
 with various dynamic counter values when printed to the log. Like
 printf() in the C language, backslash escape sequences are honored:

 \r - carriage return (no line feed)
 \e - escape
 \n - a carriage return/line feed
 \t - tab

 ..and OPCS-specific '%' format sequences, such as:

 %5cF -- print channel 'c' counter in frames(ft'frms) format
 ||| (e.g. 16(1'0) with 5 digit padding
 |||
 ||Indicates "frames(feet)" format
 |Channel 'c' (camera)
 The number of digits to pad

 ..which is an example of the general syntax:

 %<width><channel><op>

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

125

 ..where:

 <width> a numeric value of how many characters to pad.

 <channel> the channel letter for the counter. ('a'-'p')

 <op> the format operator character which can be one of:

 r - ratio value, e.g. "1:1:1"
 p - position, e.g. "26"
 f - feet'frames, e.g. "1'10"
 F - frames(feet), e.g. "26(1'10)"
 S - special (currently, "%0dS" prints fader in degrees)

 '%%' can be used to print a percent character. (OPCS K1.13b+)
 Any other characters are inserted in the logfile verbatim.

 (OPCS K2.03) If FPF(OPCSDEFS) is set to 0 for a channel,
 "-" will be printed in place of a feet'frames value.

 BUGS
 Verisions of OPCS earlier than K2.03 would blow out with a
 DIVISION BY ZERO error if FPF(OPCSDEFS) is set to zero for a channel.

 In K2.03, an fpf of zero is supported to disable footage counts,
 such as for film stocks that have a non-integer number of
 frames per foot, e.g. IMAX 15 perf (4.26666) and 10 perf (6.40).

 ORIGIN
 Gregory Ercolano, Venice California 04/07/98

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

126

mrp(OPCSDEFS)

MRP(OPCSDEFS) Optical Printer Control System MRP(OPCSDEFS)

 NAME
 mrp - maximum ramp pulses for shutter motors

 USAGE
 mrp [chan] [pulses]

 EXAMPLES
 mrp b 800 # limit pro ramps to no more than 800 pulses
 mrp c 500 # limit cam ramps to no more than 500 pulses
 # during shutter runs

 DESCRIPTION
 Sets a maximum for the number pulses used for ramping during
 shutter runs for the specified channel. Set this value equal to
 or less than the number of pulses it takes to move the exposing
 shutter from the 'closed' position to the position where the
 shutter just begins to open.

 This will ensure motor ramping does not occur while the film
 is being exposed.

 Use the following logic:

 If there are 2000 steps per full rotation of the shutter, and
 the shutter starts opening at 90 degrees (1/4 rotation) on
 either side of the closed position, ramping can therefore
 occur up to 500 pulses without risking unintended film exposure.

 In actual practice, you may want to set the value slightly lower,
 in case the shutter has slop.

 Only channels with a shutter blade (camera, cap shutter)
 need an MRP value; the rest can be 0.

 To accurately calculate the MRP value for the camera, one must
 understand exactly at what point film exposure takes place, e.g.

 Shutter 5000 2000
 Exposure Degrees PPR PPR
 ----------- ------- ---- ----
 Full Close 0 0 0 __
 First Light 76 1056 422 | Film Exposed to light
 Full Open 112 1556 622 |__ during this period.
 First Dark 245 3403 1361 | Avoid motor ramping
 Full Dark 283 3931 1572 __| during this time!
 Full Close 360 5000 2000

 So for a 2000 PPR shutter, we want to limit motor ramping
 to the 0..400 and 1600..2000 region, to avoid ramping during
 exposure. Therefore the MRP should be 400, which limits rampup
 to the 0..400 region, and rampdown to the 1600..2000 region.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

127

 In actual practice there's slop in both the home and shutter
 movement, but also the "First Light" and "Full Dark" are not
 very critical, as very little exposure is happening during
 this time, so often MRP 400 can safely be 500 (or 90 deg).

 For camera MRP, it's the degree positions of the shutter blade
 which determines when light can first start hitting the film
 through the Acme 35mm full frame aperture. The formula for
 degrees(out of 360) to pulses (out of the PPR or Pulses Per Rev):

 pulses = (<deg> / 360) * <PPR>
 1056 = (76 / 360) * 5000 <- for a 5000 PPR shutter
 422 = (76 / 360) * 2000 <- for a 2000 PPR shutter

 CAVEATS
 MRP also affects the operation of AUTOFILT(OPCS) and FILTER(OPCSDEFS).
 See these documents for details.

 SEE ALSO
 MRP(OPCSDEFS) - set 'maximum ramping pulses' for shutter runs
 RAMP(OPCSDEFS) - set maximum accelerations and velocities
 SPD(OPCS) - set the camera's exposure speed
 SPD(OPCSDEFS) - set a motor's running speeds
 RAMPCURVE(OPCSDEFS) - set ramping curves for shutter runs
 AUTOFILT(OPCS) - enable/disable the auto-wedging filter wheel
 FILTER(OPCSDEFS) - define channel to control a filter wheel

 ORIGIN
 Gregory Ercolano, Los Feliz California 08-15-91

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

128

name(OPCSDEFS)

NAME(OPCSDEFS) Optical Printer Control System NAME(OPCSDEFS)

 NAME
 name - set the channel's name used in counter displays

 SYNOPSIS
 name [chan] name

 EXAMPLES
 # Use names that match the commands
 name a Pro2 # sets name for 'a' channel to "Pro2"
 name b Pro1 # sets name for 'b' channel to "Pro1"
 name c Cam # sets name for 'c' channel to "Cam"

 # Use names that match the channel letter
 name a A # sets name for 'a' channel to "A"
 name b B # sets name for 'b' channel to "B"
 name c C # sets name for 'c' channel to "C"

 DESCRIPTION
 Lets the operator set the default names used in the counter
 displays, e.g. bigcounters(OPCSDEFS), show(OPCS), etc.
 The 'name' parameter:

 > Must not contain spaces
 > Are limited to 9 characters in length

 If spaces are needed, use underbars instead (_).
 'name' is limited to 9 characters per channel due to the
 screen constraints of 80 column displays for onscreen counters.

 HISTORY
 This command was added in OPCS version K2.00/TC (Turbo C).
 Older versions (K1.xx) used STARTUP.DEFS which was obsoleted
 in K2.00, and in many cases hard-coded names were used instead.

 SEE ALSO
 BIGCOUNTERS(OPCSDEFS) - sets the style of the onscreen counters

 ORIGIN
 Gregory Ercolano, Alhambra California 07/16/21

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

129

opcscmd(OPCSDEFS)

OPCSCMD(OPCSDEFS) Optical Printer Control System OPCSCMD(OPCSDEFS)

 NAME
 opcscmd - execute an OPCS command from within a defs file

 USAGE
 opcscmd [command command command]

 EXAMPLES
 opcscmd go d 50 reset d 0 # move d chan, then reset to 0

 DESCRIPTION
 OPCSCMD(OPCSDEFS) allows a gateway from the defs file commands to the
 OPCS commands, the same way LDEFS(OPCS) allows OPCSDEFS commands to
 be executed from within the OPCS command mode.

 All text that follows 'opcscmd' up to the end of the line (or a '#'
 comment character) is executed as an OPCS command string.

 SEE ALSO
 LDEFS(OPCS) - run OPCSDEFS commands from within the OPCS command mode
 OPCSCMD(OPCS) - run OPCS commands from within the OPCSDEFS command mode
 man -k OPCS: - list OPCS commands with 'one liner' descriptions
 man -k OPCSDEFS: - list OPCSDEFS commands with 'one liner' descriptions

 ORIGIN
 Gregory Ercolano, Los Feliz California 12/15/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

130

ppr(OPCSDEFS)

PPR(OPCSDEFS) Optical Printer Control System PPR(OPCSDEFS)

 NAME
 ppr - configure the 'pulses per revolution' for a motor

 SYNOPSIS
 ppr [chan] [pulses]

 EXAMPLE
 ppr a 2000 # microstepper system
 ppr a 4000 # microstepper with vistavision
 ppr a 400 # half stepper system

 DESCRIPTION
 Sets the number of pulses needed to rotate a motor one revolution.
 This command exists especially for the CAMERA and PROJECTOR motors.

 Keep in mind the OPCS hardware runs stepper motors at more than the
 motor's rated resolution. Microstepper systems can have as many as
 2000 pulses per rev, and half stepper systems can have 400 per rev.

 The software uses the PPR value in two ways. One is to obviously
 translate frames into physical steps for the motors. The other
 is for the ALLSTOP logic to know when to check for the ALLSTOP key,
 so as not to stop the shutter mid-revolution.

 NOTES
 PPR settings for the fader are never used by the software, since
 revolutions have no meaning in the context of running the shutter.

 PPR values should be divisible by two, esp. for the projector so that
 half phase shifts calculate to non-fractional steps.

 BUGS
 You cannot specify floating point values for PPR. This is not actually
 a bug: if your hardware is geared in such a way that a full revolution
 occurs in a fractional number of steps, you should probably fire the
 guy who built it and have the hardware rebuilt anyway.

 To avoid a nasty bug with the ALLSTOP key, and to have counters
 update properly, configure the PPR(OPCSDEFS) command for the
 D thru L channels to be '10' in your OPCSDEFS.OPC file, regardless
 of the actual number of pulses per revolution. This also ensures
 that slewing in JOG doesn’t go in very large increments.

 ppr d 10 # non-shutter channels only
 ppr e 10
 ppr f 10
 ppr g 10
 ppr h 10

 ORIGIN
 Gregory Ercolano, Los Feliz California 11/29/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

131

pro2display(OPCSDEFS)

PRO2DISPLAY(OPCSDEFS) Optical Printer Control System PRO2DISPLAY(OPCSDEFS)

 NAME
 pro2display - Enable/Disable display of aerial projector counters

 USAGE
 pro2display [on|off]

 EXAMPLES
 pro2display on # show aerial projector counters
 pro2display off # don't show aerial projector counters

 DESCRIPTION
 Some printer systems do not have aerial projectors. This command
 disables the aerial counters, to avoid confusing camera operators.

 ORIGIN
 K1.12d+ Gregory Ercolano, Venice California 04/09/98

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

132

prophase(OPCSDEFS)

PROPHASE(OPCSDEFS) Optical Printer Control System PROPHASE(OPCSDEFS)

 NAME
 prophase - configure projector's phase adjustment for 1:1 shooting

 USAGE
 prophase [chan] [pulses] # sets number of pulses channel
 # will move before shooting 1:1

 EXAMPLES
 prophase a 200 # half-stepper systems (400 ppr)
 prophase b 200 #

 prophase a 1000 # Centent microsteppers (2000 ppr)
 prophase b 1000 #

 prophase a 1600 # Lynx microsteppers (3200 ppr)
 prophase b 1600 #

 DESCRIPTION
 Sets the projector phase adjustment (in motor pulses). Phase adjustment
 occurs just before and just after 1:1 ratio shooting. This phase
 adjustment is necessary so the projector(s) and camera can run
 together, only exposing film when the projector images are seated.

 Almost without exception, the prophase command:

 1) Is always set to be 1/2 the number of pulses for one
 motor revolution. This includes Vistavision movements.
 On a system where one switches back and forth between
 Vista / 35mm / 16mm, the prophase value does NOT change,
 even though the PPR(OPCSDEFS) value may change.

 2) Is set ONLY for the projectors. A value of '0' should be
 set for all the other channels.

 The prophase value is actually ignored by the other
 channels, so it doesn't really matter what the values
 are for non-projector channels. But specifying '0'
 makes it clear the value is ignored.

 BUGS
 None reported.

 SEE ALSO
 RAT(OPCS) - set the shooting ratio for the REP command
 REP(OPCS) - shoot current projector/camera shooting ratio
 PROPHASE(OPCSDEFS) - sets projector phase adjustment for 1:1 shooting
 MATH(DOCS) - math expressions (for use in frame specifications)
 SYNTAX(OPCS) - Online calculator and OPCS math expression syntax

 ORIGIN
 Gregory Ercolano, Los Feliz California 12/15/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

133

ramp(OPCSDEFS)

RAMP(OPCSDEFS) Optical Printer Control System RAMP(OPCSDEFS)

 NAME
 ramp - configure motor's maximum accelerations and velocities

 USAGE
 ramp [chan] [norm accel] [norm vel] [slew accel] [slew vel]

 EXAMPLES
 Velocities
 ___|____
 | |
 --- ---
 ramp a 10 150 15 200 ramp a 10 150 15 200
 -- -- ------ ------
 |_______| | |
 | | Slewing speed
 Accelerations |
 Normal speed

 DESCRIPTION
 This command sets up the maximum accelerations and velocities
 for non-shutter motor movement commands such as GO(OPCS),
 JOG(OPCS), FEED(OPCS), etc.

 Note: RAMP(OPCSDEFS) is not used for shutters and film movement
 commands, e.g. CAM(OPCS), REP(OPCS), SEEK(OPCS). Those
 calculate accelerations and velocities automatically based on
 motor speeds configured with SPD(OPCS) and SPD(OPCSDEFS),
 and are influenced by PPR(OPCSDEFS) and MRP(OPCSDEFS).

 Since the kuper card works at 120 samples per second, the values
 represent the number of pulses per sample, or the number
 of pulses per 1/120th of a second.

 Acceleration values are used for ramping. As the motor comes up to
 speed, it will do so in increments specified by the 'acceleration'.

 Velocity values are the maximum running velocities. The motor will
 not go faster than the maximum velocity supplied.

 SEE ALSO
 MRP(OPCSDEFS) - set 'maximum ramping pulses' for shutter runs
 RAMP(OPCSDEFS) - set maximum accelerations and velocities
 SPD(OPCS) - set the camera's exposure speed
 SPD(OPCSDEFS) - set a motor's running speeds
 RAMPCURVE(OPCSDEFS) - set ramping curves for shutter runs

 ORIGIN
 Gregory Ercolano, Los Feliz California 08-15-91

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

134

rampcurve(OPCSDEFS)

RAMPCURVE(OPCSDEFS) Optical Printer Control System RAMPCURVE(OPCSDEFS)

 NAME
 rampcurve - configure the motor ramping curve for shutter runs

 USAGE
 rampcurve [value] # 1.0 = linear, 0.0 = sinusoidal

 [value] should be in the range -0.3 to 1.0. Values outside this
 range are not recommended.

 EXAMPLES

 | o o o o o o o o o o |
 | o o |
 | o o |
 | o o |
 | o o |
 | o o |
 |---|
 | rampcurve 1.0 |
 |___|

 | o o o o o o o o o |
 | o o |
 | o o |
 | o o |
 | o o |
 | o o o o |
 |---|
 | rampcurve 0.0 | <-- recommended setting
 |___|

 DESCRIPTION
 This command allows the user to define the curve used during ramping
 for the shutter motors. The effects are subtle at higher speeds.

 The linear graph is desirable for motors that are moving a great
 deal of torque, or overcoming a large inertia.

 The sinusoidal graph (if you can tell which that is, what with our
 'high resolution' display capabilities here) is for motors that
 can quickly get up to speed, without torque problems.

 The sinusoidal ramp is preferable, in order to avoid motor resonance
 at the slower speeds. (Normally, all stepper motors resonate more
 at slower speeds, and this can be counterproductive during ramping.)

 SEE ALSO
 MRP(OPCSDEFS) - set 'maximum ramping pulses' for shutter runs
 RAMP(OPCSDEFS) - set maximum accelerations and velocities
 SPD(OPCS) - set the camera's exposure speed
 SPD(OPCSDEFS) - set a motor's running speeds
 RAMPCURVE(OPCSDEFS) - set ramping curves for shutter runs

 ORIGIN
 Gregory Ercolano, Los Feliz California 12/15/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

135

respond(OPCSDEFS)

RESPOND(OPCSDEFS) Optical Printer Control System RESPOND(OPCSDEFS)

NAME
 respond - configure device name to send responses to OPCS commands

SYNOPSIS
 respond off # no com port error logging (default)
 respond com1 # send error codes to com1

DESCRIPTION
 This command enables error code characters to be sent to a device
 whenever the OPCS system is ready for a new command. The name can
 be any DOS device name, or can be 'off' to disable the transmission
 of responses completely.

 Since the printer software can be started with its input coming
 from a device (such as: opcs < com1), RESPOND(OPCSDEFS) is used
 to close the loop by sending signals back to the device whenever
 an OPCS command completes execution to indicate when a command
 (or series of commands) finished executing, and whether the command
 failed execution or not.

 Here is how to start up the printer software reading the serial
 port for incoming commands from a remote computer:

 opcs <com1

 Assuming baud rates have already been set up with the DOS 'mode'
 command, and the serial cable configured to properly handshake
 with the IBM PC (see below), the software will receive OPCS
 commands the same way they would be expected from the keyboard.

 With 'respond' enabled, error codes will get sent back to the remote
 computer over the serial line to indicate when the OPCS software
 completed the last command and is ready for a new one.

CAVEATS
 In version K2.01 and up, values other than 'off' overrides the
 CMDLINE(OPCSDEFS) 'editor' setting, forcing it to 'dos' mode editing.
 This is because interactive editing is not supported over the com port.

 In the version before K2.01, 'respond' did not do the override,
 so you have to set 'cmdline dos' for com port communication to work.

ERROR CODES
 The error protocol is pretty simple. With RESPOND(OPCSDEFS) enabled,
 these ASCII codes are sent back to the remote computer whenever the
 OPCS software is ready for a new command. Which character gets sent
 depends on whether the last command executed successfully or not:

 CODE DESCRIPTION
 ---- --
 > Command completed OK, waiting for a new command.
 X Command failed with an error, waiting for a new command.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

136

IMPLEMENTING REMOTE COMPUTER CONTROL
 When setting up another computer to control the software through
 the serial port, consider these issues:

 1) BAUD RATE. The baud rate should be low (300 or 1200 baud)
 because the IBM PC does not normally do interrupt driven
 communications without a special driver loaded.

 2) SERIAL PORT WIRING. The PC is picky about having certain serial
 control signals before it can communicate to other computers.

 3) GETTING THE MACHINES COMMUNICATING. First, get the remote
 computer sending characters to the OPCS system's IBM PC, then
 work on getting characters back to the remote:

 a) Set up the remote to communicate at 300 baud, no
 parity, 8 data bits, one stop bit.

 b) Run the following on the OPCS system's computer:

 mode com1:300,n,8,1

 c) Now execute the following to test for receiving lines
 from the remote computer:

 type com1

 If the command fails with a timeout error, make sure
 pins 5 & 6 are being pulled high on the PC's 25 pin
 serial connector (6 & 8 on a 9 pin connector).

 If the remote computer is not pulling these signals
 properly, you can cheat the signals high by doing the
 following at the PC's connector:

 25 PIN CONNECTOR 9 PIN CONNECTOR
 ---------------- ---------------
 Tie pin 20 to pin 6. Tie pin 4 to pin 6.
 Tie pin 4 to pin 5. Tie pin 7 to pin 8.

 d) Now try sending characters to the remote:

 echo test > com1

 This should send 'test' and a CR/LF to the remote computer.

 With these steps complete, the following command will
 force the OPCS software to receive its commands from the
 remote computer (you may want to have already setup a
 'respond com1' command in the 'OPCSDEFS.OPC' file):

 opcs < com1

 Remember the the IBM PC likes to see a CR followed by a LF
 at the end of each line.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

137

 4) HANDSHAKING. The remote should always wait until one of the
 error codes has been received before sending a new command.
 If the returned code shows an error condition, it should
 probably stop sending commands, and print an error locally,
 since a film buckle may have caused the error, and should
 not continue shooting until the error has been corrected.

ALLSTOP
 The ALLSTOP(OPCSDEFS) command should probably monitor the appropriate
 COM port address so that the remote computer can stop the motors if it
 wants to. The best approach is to monitor the com port's DTR bit for
 the port. This way the remote computer can pull the DTR line to stop
 the motors. The remote would simply pull the DTR signal until an
 error code is returned, indicating the motors have stopped.

 With RESPOND(OPCSDEFS) active, all error handlers default to 'abort'
 so that the remote system can assume even after an error, the software
 is still expecting OPCS commands, and not error recovery keypresses.

ORIGIN
 Gregory Ercolano, Los Feliz California 02-08-91

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

138

runcmd(OPCSDEFS)

RUNCMD(OPCSDEFS) Optical Printer Control System RUNCMD(OPCSDEFS)

 NAME
 runcmd - define your own OPCS command as a RUN script

 USAGE
 runcmd [name] [filename] [#args] # create new (or redefine old) runcmd
 runcmd -clear # clears all runcmd definitions (K2.02+)

 [name] The name of the new command. 10 characters max.

 [filename] The full pathname of the script to be executed
 in place of [name] when executed as a command by the operator.

 NOTE: If [filename] is a '-' (dash), this will delete any commands
 previously defined as [name]. (ie. 'runcmd w - 0' will delete any
 previously defined 'w' command). [filename] is 80 characters max.

 [#args] is the number of arguments OPCS will pass to the script.
 NOTE: If -1 is specified, the arguments can be variable; all
 arguments the user specifies up to the end of the line are
 passed on to the script.

 See below 'ARGUMENTS' for how to pass arguments to a script.
 Any value 0-9 and -1 is allowed.

 If a file of 'name.hlp' exists, it is assumed to be a 'help file'
 which will be printed to the screen if the camera operator invokes
 the command with the wrong arguments.

 -clear Clears all previous runcmd definitions.

 EXAMPLES
 runcmd lineup .\run\lineup.run 0 # Setup a 'lineup' script

 runcmd woff .\run\w.run 1 # Setup 'woff' (windoff) command
 # that expects 1 argument.

 runcmd woff - 0 # Delete any previous 'woff' command

 DESCRIPTION
 RUNCMD(OPCS) lets you define your own commands as run scripts, with
 optional help text for users if they specify the wrong number of
 arguments. These commands will be recognized as if they were built
 in to the OPCS program.

 Whenever the OPCS software reads a command from the operator, it
 checks to see if the [name] for any RUNCMD matches a command the
 operator entered. If so, OPCS will use [filename] as the name of
 a RUN script to execute in place of the command. Arguments can be
 specified by the operator if the RUNCMD and the associated script
 file are set up for it. If the user does not specify all the
 arguments, the text in the help file (name.hlp) will be displayed,
 if the file exists.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

139

 All techniques that can be used in a RUN(OPCS) script can be used in
 scripts defined with RUNCMD(OPCSDEFS). Additionally, the $ argument
 mechanism allows the passing of arguments to run scripts.

 Commands defined with RUNCMD can be stacked on one line like any
 other OPCS commands, as long as the number of arguments is not -1
 (i.e. not 'variable'). If variable args are used, then commands
 CANNOT be stacked.

 RUNCMD(OPCSDEFS) defined commands will show up in the '?' help listing
 contained in parentheses, indicating they are commands not part of
 the software. DOSCMD(OPCSDEFS) definitions also show up this way.

 OPTIONAL HELP FILES (K1.13a+)
 When a runcmd is invoked without the proper number of arguments,
 an error message will be printed. If you want, you can also have
 some help text printed.

 To make a 'help file' for the command, create a file in the same
 directory, and of the same name as the runcmd's filename, but with
 a .HLP extension. If the file exists, the files contents are displayed
 along with the error. Consider the following runcmd:

 runcmd foo /opcs/mystuff/foo.run 3

 In this case, the optional help file would be called:

 /opcs/mystuff/foo.hlp

 The file should just contain ascii text that is printed verbatim
 to the user's screen following the 'bad/missing arguments' error.
 This should probably just be a few short lines of text with a
 description of the command and its expected arguments.

 LIMITS
 Currently, no more than 30 different RUNCMD definitions can be setup.
 There is a 10 character limit on [name], an 80 character limit on
 [filename], and anywhere from 0 to 9 arguments are allowed per
 command.

 ACTUAL EXAMPLES
 .\SCRIPTS\LINEUP.RUN:

 @go c 1000 # seat camera for lineups
 # CAMERA IS NOW SEATED FOR SMPTE LINEUP
 @pse # pause while operator does lineup
 @go c -1000 # unseat, without loosing frame position

 Note the use of the '@' prefix. This allows the commands to
 execute without echoing to the screen. See RUN(OPCS) for more
 on the '@' prefix.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

140

 ARGUMENTS
 The following example shows how to pass arguments from the command
 line to a script using the $ mechanism. $ followed by a digit 1-9
 is replaced by arguments specified on the operator's command line,
 and $* is replaced by ALL arguments that were supplied.
 (Note: Use $$ to specify an actual '$' to prevent it being
 interpreted as an argument variable)

 .\run\w.run might look like:

 # RUNNING OFF $1 FRAMES WITH SHUTTER CLOSED
 @! echo seekcap yes > foo.foo ! ldefs foo.foo
 @seek $1

 If 'runcmd w .\run\w.run 1' is defined in the OPCSDEFS.OPC
 file, when the operator types 'w 80', the script file will execute,
 and the argument 80 will replace all occurrences of $1 in the
 script file. The resulting script will automatically be interpreted
 as the following during execution:

 # RUNNING OFF 80 FRAMES WITH SHUTTER CLOSED
 @! echo seekcap yes > foo.foo ! ldefs foo.foo
 @seek 80

 You can specify up to 9 arguments if the script file and RUNCMD
 are setup for it. Here is an example that uses two arguments in
 a cross dissolve command. The first argument is the number of
 cross dissolves, the second argument is the number of frames in
 each cross dissolve:

 ---- OPCSDEFS.OPC:
 runcmd xdx .\run\xdx.run 2 # X-dissolve command

 ---- .\RUN\XDX.RUN:
 # DOING $1 CROSS DISSOLVE(S) $2 FRAMES EACH
 do $1 dxo $2 cam $2 cam -$2 pro ($2+20) dxi $2 cam $2

 When the operator executes 'xdx 70 8', the script is interpreted:

 # DOING 70 CROSS DISSOLVE(S) 8 FRAMES EACH
 do 70 dxo 8 cam cam -8 pro 28 dxi 8 cam 8

 Here's an example that uses variable arguments:

 ---- OPCSDEFS.OPC:
 runcmd zoom .\run\zoom.run -1 # setup a zoom

 ---- .\RUN\ZOOM.RUN:
 ! ease foo.tmp $*
 feed e foo.tmp

 In this case, any number of arguments can be specified to 'zoom',
 and will be expanded into the script where the $* is specified.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

141

 GOTCHYAS
 The RUNCMD can seem really nice at first, but it does have drawbacks.

 You are basically 'customizing' a system when you add such
 definitions, which can be as bad as 'creating a new version' of
 the software. Symptoms will be:

 o Operators used to a plain-jane OPCS system will be confused
 by commands they have never seen before.

 o RUN scripts containing commands that are really defined by RUNCMD
 will cause errors on systems that don’t have the same definitions.

 BUGS
 OPCS does not do any argument type checking when arguments are passed
 through commands defined by RUNCMD. If the user forgets to specify
 an argument, such as with the 'w' command in the following example:

 w pro 12 # user forgot #frames following 'w'

 'pro' will be passed as an argument to 'w', and the executing script
 will fail with an error because 'pro' will eventually be used as a
 frame argument to the SEEK command, which will cause a somewhat
 confusing error:

 seek: bad or missing argument
 Stopped at line 2 of 1: .\run\w.run

 HISTORY
 The -clear option was added in K2.02.

 SEE ALSO
 RUN(OPCS) - run a script file
 DOSCMD(OPCSDEFS) - define DOS commands to the OPCS software
 CUSTOM(OPCS) - how to make your own 'custom' opcs commands
 LOAD(OPCS) - 'load' is really a custom runcmd
 LINEUP(OPCS) - 'lineup' is really a custom runcmd
 UNLOCK(OPCS) - 'unlock' is really a custom runcmd

 ORIGIN
 Gregory Ercolano, Los Feliz California 04/19/91
 $1 and $* notation used in the UNIX Bourne and C Shells.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

142

sampspersec(OPCSDEFS)

SAMPSPERSEC(OPCSDEFS) Optical Printer Control System SAMPSPERSEC(OPCSDEFS)

 NAME
 sampspersec - Sets the motion control card's samples per second

 USAGE
 sampspersec <float> # floating point number of
 # velocity samples per second

 EXAMPLES
 sampspersec 107.0 # A800 card (REV A) - IRQ5 is 107Hz
 sampspersec 120.0 # A800 card (REV B) - IRQ5 is 120Hz
 sampspersec 120.0 # RTMC16 and RTMC48 - IRQ is 120Hz

 DESCRIPTION
 Sets the number of velocity samples per second the motion control
 card uses for its velocity values. This is the same as the IRQ
 rate in Hertz.

 > All Kuper cards use 120.0 (RTMC16, RTMC48, Kuper Industrial)

 > The OPCS "A800" board uses:
 107.0 -- for REV A firmware
 120.0 -- for REV B firmware

 "Samples" are the term used for the velocity sample rate
 in the stepper pulse generator cards.

 A velocity value is the number of step pulses sent per sample.
 So if the sample rate is 120 per second:

 Velocity Value Motor Speed
 -------------- -----------------------
 1 120 steps per second
 2 240 steps per second
 :
 255 30,600 steps per second
 :

 Put another way:

 > A velocity of '1' sends one step during the sample time
 > A velocity of '2' sends two steps during the sample time

 So basically the sample rate times the velocity gives you the
 number of steps per second. Most microstepping motors are
 configured to run at 2000 pulses per revolution (PPR).

 To compute revs per second (RPS):

 (sampspersec * velocity) / PPR = RPS

 To compute revs per minute (RPM):

 (sampspersec * velocity) / PPR / 60 = RPM

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

143

HISTORY
 For decades only the Kuper Controls cards were supported by
 OPCS, which are all 120 samples per second, and this value
 was configured in the old (and now obsolete) STARTUP.DEFS file.

 In K2.00, 'sampspersec' from STARTUP.DEFS was moved here to
 OPCSDEFS.OPC. This value is used to support the new A800 board,
 which can have different sample rates depending on the firmware.

 ORIGIN
 Version K2.00 Gregory Ercolano, Alhambra California 06/01/20

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

144

seekcap(OPCSDEFS)

SEEKCAP(OPCSDEFS) Optical Printer Control System SEEKCAP(OPCSDEFS)

 NAME
 seekcap - configure the fader to cap during SEEK commands

 USAGE
 seekcap [on/off] # ON enables automatic capping

 EXAMPLES
 seekcap on # cap fader when seek is used with camera
 seekcap off # no auto cap

 DESCRIPTION
 This command enables automatic capping of the fader whenever the
 camera is moved with the SEEK command.

 Default is 'on'.

 SEE ALSO
 SEEK(OPCS) - seek to positions quickly on camera/projector(s)

 ORIGIN
 Gregory Ercolano, Los Feliz California 7/28/91

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

145

setbit(OPCSDEFS)

SETBIT(OPCSDEFS) Optical Printer Control System SETBIT(OPCSDEFS)

 NAME
 setbit - set bit(s) on a port

 USAGE
 setbit [port] [mask] [softlatch] # (values hex!)

 EXAMPLES
 setbit 0378 04 0 # lpt1 port bit #2 (1=#0, 2=#1, 4=#2)
 setbit 0306 01 1 # kuper card logic connector,
 # bit #1 (note softlatch=1)

 DESCRIPTION
 This command enables bits on port, based on the mask.
 Basically, the mask is OR’ed with the port's current value.

 [port] is the port number in hex.

 [mask] is a hex byte value which is OR'ed with the current
 value at the port. (In the case of softlatching, the software latched
 value is OR'ed with the mask, to create the new value that it output
 to the port)

 CAVEATS
 o With [softlatch] set to 1, only ports 0x0000 - 0x07ff are allowed.
 Any ports above 0x07ff with [softlatch] enabled causes an error.

 o External programs changing port bits defined to OPCS with [softlatch]
 (e.g. the Kuper logic I/O port) should be aware that OPCS is
 maintaining its own internal latch for that port, and that latch
 won't know about hardware changes made by external programs.

 o Due to these issues, it's best to avoid using hardware that has to
 be latched. It's usually bad hardware practice to make WRITE ONLY
 ports, since different programs cannot co-communicate with them,
 unless some common data area or driver is arranged.

 SEE ALSO
 DEENERGIZE(OPCSDEFS) - define port/bit to deenergize motors
 ALLSTOP(OPDSDEFS) - define port/bit to detect the allstop key
 BUCKLE(OPCSDEFS) - define port/bit to detect film buckles
 VIEWER(OPCSDEFS) - define port/bit to detect viewer open
 TRIPSWITCH(OPCSDEFS) - define port/bit to detect trip switches
 SETBIT(OPCSDEFS) - set bit(s) on a port
 CLRBIT(OPCSDEFS) - clear bit(s) on a port
 XORBIT(OPCSDEFS) - invert bit(s) on a port

 ORIGIN
 Version K1.12d+ Gregory Ercolano, Venice California 03/04/98

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

146

slop(OPCSDEFS)

SLOP(OPCS) Optical Printer Control System SLOP(OPCS)

 NAME
 slop - configure 'slop correction' for sloppy hardware (e.g. faders)

 SYNOPSIS
 slop [chan] [steps]

 EXAMPLES
 slop d 300 # indicates the fader has 300 steps of 'slop'

 DESCRIPTION
 SLOP tells the software to take up slop for a motor whenever it is
 told to run in a prescribed direction.

 The sign of the [steps] arguments tells the software which direction
 it should prefer to take up slop in. A positive number takes up
 slop when the motor moves in a positive direction, a negative number
 takes up slop in the negative direction.

 To determine how much slop a motor has, disable any slop commands for
 the motor. Use JOG(OPCS) to move the motor in one direction. Now
 change directions, making note of how many steps you can tell the
 computer to run in the new direction before the equipment starts
 to actually move. Use this number of steps in the SLOP(OPCSDEFS)
 command for that motor, and note how the software tries to take up
 the slop.

 If the motor is being moved by a command in the direction the software
 wants to take up slop, the software will move the motor that many
 pulses BEYOND the position requested, and then back that many pulses
 to take up slop. This technique ensures the equipment is always
 resting on the same edge of the sloppy equipment, which can allow
 accurate positioning of even the sloppiest mechanics.

 NOTES
 For those of you who think it is a waste to have to take up slop
 EACH TIME the motor turns in the predefined direction, and that
 'it should only take up slop once..when it changes direction',
 think again, pal. You are assuming the slop distance is a fixed
 entity, which it rarely is.

 In order to arrive at positions properly, the position must be found
 by always leaving off having moved to the position FROM THE SAME
 DIRECTION, so that the equipment is always left off resting on the
 same side of the equipment slop. This necessitates always doing the
 double-move slop take up whenever the motor moves in one of the two
 directions.

 BUGS
 none.

 SEE ALSO
 INTERP(OPCSDEFS)
 GO(OPCS)

 ORIGIN
 Gregory Ercolano, Los Feliz California 12/15/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

147

spd(OPCSDEFS)

SPD(OPCSDEFS) Optical Printer Control System SPD(OPCSDEFS)

 NAME
 spd - configure the default and fastwind/slewing speeds for a motor

 SYNOPSIS
 spd [chan] [normal] [fast] [scale] [offset]

 NOTE: any of the arguments [normal] [fast] [scale] [offset] can
 be a dash (-), indicating that argument won't be modified.

 EXAMPLES
 spd c .25 .1 1.0 0.0 # sets default speed for the camera motor:
 # .25 is normal running speed,
 # .10 is the slew speed (used by SEEK)
 # 1.0 and 0.0 indicate speeds are specified
 # as ROTATIONAL speeds.

 spd c .25 .1 3.0 0.0 # Same as above, but shows correct [scale]
 # value so EXPOSURES can be specified
 # for a 120 deg. shutter (3.0 = 360/120).

 spd c .25 .1 2.1176 # Same as above, but shows correct [scale]
 # value so EXPOSURES can be specified
 # for a 170 deg. shutter (2.1176 = 360/170)

 DESCRIPTION
 Normally, one of these commands for EACH motor should appear in
 the OPCSDEFS.OPC file. This command sets the initial running speeds
 for a motor, as well as how speeds are specified (i.e., rotational
 or exposure speeds. See below.)

 This command also allows SCALEs and OFFSETs to be applied to speed
 values automatically to let you specify EXPOSURE speeds instead of
 rotational speeds...

 ROTATIONAL SPEED
 An example of a rotational speed could be .25, which would mean: a
 full rotation of the camera shaft will occur in .25 of a second, or
 1/4 a second. This is how motor speeds are normally handled by the
 software.

 EXPOSURE SPEED
 An example of an exposure speed of .5 would mean the film exposes
 to light for 1/2 second. Since most shutters are 170 degrees
 (i.e. exposing light for 170 degrees out of the total 360 degrees
 of rotation), the [scale] value can be used to compensate. You will
 want to decrease the camera's rotational speed. To do this, multiply
 360/170 times the current speed to compensate for the fact that the
 shutter is only open for a fraction of a rotation.

 This is where the [scale] argument comes in. By setting [scale] to
 2.1176 (360/170), you can then specify speeds as 'exposure speeds',
 and the system will compensate automatically. If you have a 120
 degree shutter, use 3.0 (360/120) for the [scale] value.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

148

 You need only do this for the camera motor..the projectors do not
 have to be set up this way, since the projectors always slave to
 the camera's speed whenever a tandem run is executed.

 EQUATION
 The following equation shows how scales and offsets are first applied
 to motor speeds:

 actual motor speed = (norm_speed * scale) + offset * spdinterp

 A value of 1.0 for [scale], and 0.0 for [offset] makes NO CHANGE
 in the norm_speed (normal running speed), and thus will reflect shaft
 rotation speed.

 'spdinterp' will affect the equation only if a SPDINTERP(OPCSDEFS)
 command is configured, in which case the speed will be modified
 according to the current position of the SPDINTERP's master channel.

 SEE ALSO
 MRP(OPCSDEFS) - set 'maximum ramping pulses' for shutter runs
 RAMP(OPCSDEFS) - set maximum accelerations and velocities
 SPD(OPCS) - set the camera's exposure speed
 SPD(OPCSDEFS) - set a motor's running speeds
 RAMPCURVE(OPCSDEFS) - set ramping curves for shutter runs
 SPDINTERP(OPCSDEFS) - set auto-interpolation for exposure speeds

 BUGS
 Speeds of 0.0 will cause the software to blow out unpleasantly.
 Avoid setting a motor's speed to zero, or doing any operation
 that would result in an actual speed of zero.

 ORIGIN
 Gregory Ercolano, Los Feliz California 11/29/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

149

spdinterp(OPCSDEFS)

SPDINTERP(OPCSDEFS) Optical Printer Control System SPDINTERP(OPCSDEFS)

NAME
 spdinterp - configure exposure speed interpolations

SYNOPSIS
 spdinterp [slavechan] [masterchan] [lowpos] [highpos] [total] [samples]

EXAMPLES
 spdinterp c e -1000 1000 2 0.5 1.5
 - - ---------- - -------
 | | | | |
 | | | | The exposure compensation values.
 | | | |
 | | | # of exposure compensation values.
 | | |
 | | The extreme positions for the 'e' (zoom) channel.
 | |
 | 'e' (zoom) is the master channel.
 |
 'c' (camera) exposure speed slaved to [masterchan]

DESCRIPTION
 SPDINTERP allows a channel's normal running speed to be affected
 by the position of some other channel. Slewing speeds are NOT affected.

 [slavechan] is the channel whose exposure speed will be affected.
 This is usually always the 'c' (camera) channel.

 [masterchan] is channel whose position will dictate the
 exposure speed of the [slavechan]. Normally, this is the zoom channel,
 so that moving the zoom will auto-compensate the exposure.

 [lowpos] [highpos] are the low and high positions
 the [masterchan]; the extreme positions which define the
 range over which the interpolation will take place.

 [total] The total number of exposure compensation sample
 values. NOTE: If [total] is '0', this will cancel any previous
 SPDINTERP(OPCSDEFS) specifications for the [slavechan] channel.

 [samples] are the compensation values, which will
 be multiplied to [chan]'s current exposure speed, to create
 the actual, 'compensated' exposure speed.

 A value of 2.0 will effectively double the exposure speed,
 0.5 will cut the exposure speed by half, 1.0 will leave the
 exposure unmodified, etc.

 Each sample position should be separated by white space (tabs,
 spaces, CRLFs) and there should be as many samples as specified
 by [total].

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

150

OVERVIEW
 When an SPDINTERP is set up on a slave channel, it is like defining
 a look up table through which positions on the master channel affects
 the exposure speed of the slave channel.

 Requests that fall between values in the lookup table are computed
 as a linear interpolation between the two neighboring lookup values.

 The resulting interpolation results in a 'compensator value' that
 is simply multiplied to the current camera speed, to get the
 compensated 'actual speed'.

HOW SPDINTERP WORKS
 ===
 = spdinterp c e -1000 1000 3 .5 1.0 2.0 =
 = | | | | | =
 = | | | | Last sample position =
 = | | | First sample position =
 = | | Total samples =
 = | High =
 = Low =
 ===
 Figure A.

 ==
 = Zoom Clip Interped Compensated =
 = Posns Window Samples Compensator Actual Speed =
 = Values (SPD=0.5) =
 = | =
 = -2000 ----> | ----- 0.50 ----> 0.25 =
 = -1500 ----> | LOW = -1000 /------ 0.50 ----> 0.25 =
 = -1000 ----------------------> 0.5 -------- 0.50 ----> 0.25 =
 = -500 ----------------------> -------- 0.75 ----> 0.38 =
 = 0 ----------------------> 1.0 -------- 1.00 ----> 0.50 =
 = 500 ----------------------> -------- 1.50 ----> 0.75 =
 = 1000 ----------------------> 2.0 -------- 2.00 ----> 1.00 =
 = 1500 ----> | HIGH = 1000 \------ 2.00 ----> 1.00 =
 = 2000 ----> | ----- 2.00 ----> 1.00 =
 = | =
 ==
 Figure B.

 Whenever the zoom moves to a new position, it is clipped through the
 'clipping window' between the [low] and [high]. This creates a lookup
 into the sample list using a linear interpolation. Results in an
 'Interped Compensator Value', which is then multiplied by the current
 speed of the camera (SPD=0.5), resulting in 'Compensated Actual Speed'.

 Note when zoom is 0 (exactly between the LO and HIGH values) the actual
 speed is the same as the camera speed; the compensator value becomes
 1.0, which multiplied against the camera speed yields no change. This
 is because the 'zero' position on the zoom is usually 1:1, which is
 where exposure speeds should match the actual speed.

 For this reason, it is best if the extreme zoom positions are totally
 opposite (2:1 vs 1:2, or 10:1 vs 1:10, etc), and the 'middle value'
 in the samples is 1.0. This way if zoom is 1:1, exposure is unchanged.

SEE ALSO
 FEED(OPCS) - feed new positions to motors every camera frame
 INTERP(OPCSDEFS) - set up interpolation points

ORIGIN
 Version K1.12e+ Gregory Ercolano, Venice California 04/12/98

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

151

tension(OPCSDEFS)

TENSION(OPCSDEFS) Optical Printer Control System TENSION(OPCSDEFS)

 NAME
 tension - configure tension motor port for each channel

 USAGE
 tension [chan] [port] [mask] [invert] [softlatch] # (values hex!)

 EXAMPLES
 tension a 03bc 01 00 0 # lpt1 output port bit #1
 tension a 0306 01 00 1 # RTMC16 logic connector bit #1
 # (note [softlatch] set to 1)

 DESCRIPTION
 Defines the port/bit combo that controls the film tension motors for when
 the specified [chan] changes direction. Intended only for cam/pro/pro2
 (channels a/b/c) to maintain proper tension on the film.

 [chan] is the channel name of the motor to be affected.

 [port] is the hard port. 0000 disables tension motor control.

 [mask] is the bit on the port that manages the tension motor.

 [invert] if '0', running forward clears the [port] bit in [mask],
 and running reverse sets it. If '1', the opposite occurs.

 CAVEATS
 o With [softlatch] set to 1, only ports 0x0000 - 0x07ff are allowed.
 Any ports above 0x07ff with [softlatch] enabled causes an error.

 o External programs changing port bits defined to OPCS with [softlatch]
 (e.g. the kuper logic I/O port) should be aware that OPCS is
 maintaining its own internal latch for that port, and that latch
 won't know about hardware changes made by external programs.

 o Due to these issues, it's best to avoid using hardware that has to
 be latched. It's usually bad hardware practice to make WRITE ONLY
 ports, since different programs cannot co-communicate with them,
 unless some common data area or driver is arranged.

 SEE ALSO
 DEENERGIZE(OPCSDEFS) - define port/bit to deenergize motors
 ALLSTOP(OPDSDEFS) - define port/bit to detect the allstop key
 BUCKLE(OPCSDEFS) - define port/bit to detect film buckles
 VIEWER(OPCSDEFS) - define port/bit to detect viewer open
 TRIPSWITCH(OPCSDEFS) - define port/bit to detect trip switches
 SETBIT(OPCSDEFS) - set bit(s) on a port
 CLRBIT(OPCSDEFS) - clear bit(s) on a port
 XORBIT(OPCSDEFS) - invert bit(s) on a port

 ORIGIN
 Gregory Ercolano, Los Feliz California 09/11/90

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

152

tripswitch(OPCSDEFS)

TRIPSWITCH(OPCSDEFS) Optical Printer Control System TRIPSWITCH(OPCSDEFS)

 NAME
 tripswitch - configure trip switches for axes

 USAGE
 tripswitch [port] [mask] [test] [0] # (all values in HEX!)

 EXAMPLES
 tripswitch 0000 00 00 0 # disable all trip switch detection
 tripswitch 03bd 40 00 0 # LPT1 pin 10, HI bit detects condition
 tripswitch 03bd 40 40 0 # LPT1 pin 10, LO bit detects condition

 DESCRIPTION
 Trip switches are set up to stop motion control moves (FEED, GO, etc)
 if an axis is about to go off its track. When a trip occurs, the
 software will stop the motors and indicate a trip error:

 ** TRIP SWITCH ERROR - AXIS WENT TOO FAR **
 RETURN to continue, or SPACEBAR to ABORT:

 Sensors should be wired so that a light by the trip switch indicates
 which trip switch was activated, so the problem can be corrected.

 A trip condition will occur only when any switch changes from
 its normal state to its trip state. A trip condition will NOT occur
 when the switch changes back to its normal state. This allows the
 operator to back the motor off after a trip occurred, without
 causing recurring trip errors.

 [port] is the port number in the range 0000-03ff.
 If [port] is 0000, no trip switch checking is done.

 [mask] is applied to the value received from the port
 whenever the software is checking for a trip switch condition.
 This is applied before comparing to [test].

 [test] is compared to the value read from the port after
 [mask] is applied. If the result is the same as [test], a trip
 condition will occur.

 [0] is always zero.

 WIRING CONSIDERATIONS
 Normally you would use an optically isolated interface card for the
 buckle and viewer switches, e.g. PIO-100(DOCS).

 If directly connecting switches to the parallel port, use a separate
 dedicated 5 VDC power supply wired through the switches such that
 when the sensing switch is tripped, +5V is supplied to the computer.

 Such a supply can be a store-bought 5 VDC regulated switching
 transformer, which gives out *exactly* 5VDC. (Avoid older linear
 transformers, as they are often unregulated)

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

153

 As with any signal going to the sensing input on a computer, the
 signal should never be open. The signal must pull either 5 volts
 or ground for a TRUE or FALSE condition. Open inputs can act like
 radio antennas that will oscillate randomly.

 If you have noise problems, shielded wire can help mitigate noise.
 Shield ONLY at the power supply end. Ground the shield to chassis
 ground if possible. Keep wire lengths as short as possible.

 If noise problems persist, it may be that the wire is simply too
 long for such a low voltage signal. The PIO-100 uses 12VDC to allow
 for longer cable lengths, and an optoisolator to convert to +5V for
 the parallel port input.

 You can find the base port value for the parallel ports from the
 operating system using the DOS 'debug' utility:

 C>debug # run 'debug'
 -d40:8 f # enter this (not the '-')
 0040:0008 BC 03 78 03 00 00 00 00 # debug spits this out
 -q ----- ----- # type 'q' to quit debug
 | |
 | LPT #2's port base address
 |
 LPT #1's port base address

 Your machine may show different values. In the case above, 03BC
 is the base port value for LPT1..note the bytes are in reverse
 order in typical LSB/MSB fashion.

 See the PARALLEL() man page which shows the pin out and port addresses
 of the IBM PC's parallel ports.

 The following shows an example of how to wire the trip switches.

 AT THE PARALLEL CONNECTOR

 Using a shielded 2 conductor cable, wire the dark conductor
 to the computer's parallel port input bit. Then run a 400 ohm
 resistor from the input pin to one of the GND pins (a pull down
 configuration).

 Wire the light conductor to the +5 volt supply. Ground the shield
 AND the +5 volt supply's ground to all of the parallel port's
 ground pins (18-25).

 AT EACH SPDT TRIP SWITCH

 Throughout the wire, you can drop in single pole dual terminal
 micro switches. Wire the switch's Normally Open (NO) terminal
 to the dark conductor that goes to the computer. Wire the switch's
 Common (C) to the light conductor (+5). Wire an LED such that the
 negative input is to the Normally Closed (NC) terminal, and the
 positive input is connected to C terminal along with the light
 conductor (+5). Now tie a 400 ohm resistor from the NC terminal
 to the shield (ground).

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

154

 Once wired, the input to the computer will be normally grounded
 (through the 400 ohm resistor at the connector). All the LEDs will
 be dark, because they are seeing 5 volts across their terminals, and
 5 volts will leak through the associated 400 ohm resistor.

 If a switch is tripped, 5 volts is brought to the computer's input.
 The switch's LED will light because now ground is supplied to its
 negative terminal through the 400 ohm resistor, since NC is no
 longer shorted to +5 by the switch.

 Set up the OPCSDEFS.OPC file to contain a tripswitch command with the
 appropriate port and bit information. Then enter the software and
 run one of the positional axes.

 If a trip condition occurs only when the switch is RELEASED (instead
 of pressed), you don’t have to change the wiring of the switches..just
 change the [test] value. EXAMPLE:

 tripswitch 03bd 40 40 0 # If this doesn't work...
 tripswitch 03bd 40 00 0 # Try this, or vice-versa.
 --

 If you find that it does not matter whether a switch is pressed or not,
 then the port and/or mask bits may be wrong. You can use the
 'PARALLEL.EXE' utility to monitor a parallel port's pins, so you can
 see which bit is actually changing when you press a trip switch. When
 executing 'parallel' from DOS, you can specify which port you want
 to monitor:

 parallel 1 # This will monitor LPT1
 parallel 2 # This will monitor LPT2

 SEE ALSO
 DEENERGIZE(OPCSDEFS) - define port/bit to deenergize motors
 ALLSTOP(OPDSDEFS) - define port/bit to detect the allstop key
 BUCKLE(OPCSDEFS) - define port/bit to detect film buckles
 VIEWER(OPCSDEFS) - define port/bit to detect viewer open
 TRIPSWITCH(OPCSDEFS) - define port/bit to detect trip switches
 SETBIT(OPCSDEFS) - set bit(s) on a port
 CLRBIT(OPCSDEFS) - clear bit(s) on a port
 XORBIT(OPCSDEFS) - invert bit(s) on a port
 PARALLEL(BIOS) - parallel port pinout with port/bit masks

 ORIGIN
 Gregory Ercolano, Los Feliz California 10/11/90

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

155

viewer(OPCSDEFS)

VIEWER(OPCSDEFS) Optical Printer Control System VIEWER(OPCSDEFS)

 NAME
 viewer - configure the viewer input port and bit mask

 USAGE
 viewer [port] [mask] [test] [0] # (all values in hex!)

 EXAMPLES
 viewer 0000 00 00 # No viewer detection
 viewer 03bd 40 40 # LPT1 pin 10, HI bit detects condition
 viewer 03bd 40 00 # LPT1 pin 10, LO bit detects condition

 DESCRIPTION
 If your system has a 'viewer open' switch, it can be wired to one of
 the IBM parallel ports to allow the software to sense its state, to
 prevent exposing film with the viewer open.

 [port] is the port number in the range 0000-03ff.
 If [port] is 0000, no viewer checking is done.

 [mask] is applied to the value received from the port
 whenever the software is checking for a viewer open condition.
 This is applied before comparing to [test].

 [test] is compared to the value read from the port after
 [mask] is applied. If the result is the same as [test], a viewer open
 condition exists.

 WIRING CONSIDERATIONS
 Normally you would use an optically isolated interface card for the
 buckle and viewer switches, e.g. PIO-100(DOCS).

 If directly connecting switches to the parallel port, use a separate
 dedicated 5 VDC power supply wired through the switches such that
 when the sensing switch is tripped, +5V is supplied to the computer.

 Such a supply can be a store-bought 5 VDC regulated switching
 transformer, which gives out *exactly* 5VDC. (Avoid older linear
 transformers, as they are often unregulated)

 As with any signal going to the sensing input on a computer, the
 signal should never be open. The signal must pull either 5 volts
 or ground for a TRUE or FALSE condition. Open inputs can act like
 radio antennas that will oscillate randomly.

 If you have noise problems, shielded wire can help mitigate noise.
 Shield ONLY at the power supply end. Ground the shield to chassis
 ground if possible. Keep wire lengths as short as possible.

 If noise problems persist, it may be that the wire is simply too
 long for such a low voltage signal. The PIO-100 uses 12VDC to allow
 for longer cable lengths, and an optoisolator to convert to +5V for
 the parallel port input.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

156

 You can find the base port value for the parallel ports from the
 operating system using the DOS 'debug' utility:

 C>debug # run 'debug'
 -d40:8 f # enter this (not the '-')
 0040:0008 BC 03 78 03 00 00 00 00 # debug spits this out
 -q ----- ----- # type 'q' to quit debug
 | |
 | LPT #2's port base address
 |
 LPT #1's port base address

 Your machine may show different values. In the case above, 03BC
 is the base port value for LPT1..note the bytes are in reverse
 order in typical LSB/MSB fashion.

 See the PARALLEL() man page which shows the pin out and port addresses
 of the IBM PC's parallel ports.

 BUGS
 None.

 SEE ALSO
 DEENERGIZE(OPCSDEFS) - define port/bit to deenergize motors
 ALLSTOP(OPDSDEFS) - define port/bit to detect the allstop key
 BUCKLE(OPCSDEFS) - define port/bit to detect film buckles
 VIEWER(OPCSDEFS) - define port/bit to detect viewer open
 TRIPSWITCH(OPCSDEFS) - define port/bit to detect trip switches
 SETBIT(OPCSDEFS) - set bit(s) on a port
 CLRBIT(OPCSDEFS) - clear bit(s) on a port
 XORBIT(OPCSDEFS) - invert bit(s) on a port
 PARALLEL(BIOS) - parallel port pinout with port/bit masks
 PIO-100(DOCS) - OPCS Parallel I/O interface board, e.g.
 http://seriss.com/opcs/pio-100/

 ORIGIN
 Version K1.12e+ Gregory Ercolano, Venice California 04/10/98

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

157

xorbit(OPCSDEFS)

XORBIT(OPCSDEFS) Optical Printer Control System XORBIT(OPCSDEFS)

 NAME
 xorbit – invert bit(s) on a port using exclusive-or (XOR)

 USAGE
 xorbit [port] [mask] [softlatch] # (values hex!)

 EXAMPLES
 xorbit 0378 04 0 # flip lpt1 port bit #2 (1=#0, 2=#1, 4=#2)
 xorbit 0306 01 1 # kuper card logic connector,
 # flip bit #1 (note softlatch=1)

 DESCRIPTION
 This command flips bits on a port, based on the mask.
 All bits specified by the mask are inverted. (set will be clear,
 clear will be set, etc)

 [port] is the port number in hex.

 [mask] is a hex byte value indicating the bits to be flipped
 on that port.

 CAVEATS
 o With [softlatch] set to 1, only ports 0x0000 - 0x07ff are allowed.
 Any ports above 0x07ff with [softlatch] enabled causes an error.

 o External programs changing port bits defined to OPCS with [softlatch]
 (e.g. the kuper logic I/O port) should be aware that OPCS is
 maintaining its own internal latch for that port, and that latch
 won't know about hardware changes made by external programs.

 o Due to these issues, it's best to avoid using hardware that has to
 be latched. It's usually bad hardware practice to make WRITE ONLY
 ports, since different programs cannot co-communicate with them,
 unless some common data area or driver is arranged.

 SEE ALSO
 DEENERGIZE(OPCSDEFS) - define port/bit to deenergize motors
 ALLSTOP(OPDSDEFS) - define port/bit to detect the allstop key
 BUCKLE(OPCSDEFS) - define port/bit to detect film buckles
 VIEWER(OPCSDEFS) - define port/bit to detect viewer open
 TRIPSWITCH(OPCSDEFS) - define port/bit to detect trip switches
 SETBIT(OPCSDEFS) - set bit(s) on a port
 CLRBIT(OPCSDEFS) - clear bit(s) on a port
 XORBIT(OPCSDEFS) - invert bit(s) on a port

 ORIGIN
 Version K1.12d+ Gregory Ercolano, Venice California 03/04/98

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

158

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

159

INTRO: DOCS

INTRO(DOCS) Optical Printer Control System INTRO(DOCS)

 This section has general documentation ("DOCS") on OPCS related
 tutorials, hardware/software setup, tools, and other miscellany.

 To get a list of all the OPCS documentation sections:

 man -k OPCS: -- All the OPCS commands
 man -k OPCSDEFS: -- All the OPCSDEFS file setup commands
 man -K DOCS: -- Miscellaneous OPCS documentation (below)

 When you use 'man -k DOCS:', you should see a list something
 like the below.

 To read the full documentation for any item, use 'man <itemname>',
 where <itemname> is the word in the left column below, e.g.
 'man math', 'man opcs', 'man gecko', etc.

 Tutorials/Instructions
 opcsetup - Setting up OPCS software for the first time
 opcshard - Setting up OPCS hardware
 quickref - Camera Operator's quick reference for OPCS commands

 Software/General
 ease - Ease in / Ease out move generator
 error - OPCS error messages
 home - OPCS home program
 math - Specifying math operations in OPCS commands
 mov - Create and edit moves (zoom, pan, etc)
 opcs - Running OPCS from the command line
 opcsdefs - The OPCS setup definitions file format/description
 parallel - Parallel port software monitor tool + pinout
 versions - OPCS Version information
 syntax - Online calculator and OPCS math expression syntax

 Hardware
 8255 - Controlling 8255 based I/O cards
 a800 - Docs for the A800 step pulse generator board (OPCS)
 centent - Centent motor drive wiring
 connector - Misc connector and card wiring used on older systems
 CIODIO24 - CIO-DIO24 Digital I/O Board (3rd Party)
 gecko - Gecko motor drive wiring (3rd Party)
 kuper - Docs for the Kuper card, general wiring
 pio-100 - Docs for the PIO-100 parallel I/O interface board
 rtmc16 - RTMC16 step pulse generator board (Kuper Controls)
 rtmc48 - RTMC48 step pulse generator board (Kuper Controls)
 serial - Serial port
 slosyn - SLOSYN motor hookups (centent/anaheim)
 sd-800 - Stepper Distribution 8-channel board
 This breaks out the DB-37 connector into separate
 RJ-45 patch cables to each stepper drive
 wiring - Miscellaneous wiring diagrams

ORIGIN
 Gregory Ercolano, Los Feliz California 08/17/20

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

160

8255(DOCS)

8255(DOCS) Optical Printer Control System 8255(DOCS)

NAME
 8255 - how to control 8255 based digital I/O cards

8255 PORTS
 The 8255 family of chips (82C55, etc) are usually one chip
 solutions to getting 24 bits of programmable digital I/O.

 Typically, the chip is configured at a base I/O address,
 such as 0310.

 There are four ports (base+0, base+1, base+2 and base+3)
 that are used to control the chip:

 base+0 - PORT #A
 base+1 - PORT #B
 base+2 - PORT #C
 base+3 - CONTROL REGISTER

8255 PROGRAMMING
 The "control register" controls the I/O direction of the 3 ports,
 and breaks out as follows:

 Bit Description
 --- --
 0 Port C (low 4 bits): 1=input, 0=output
 1 Port B (all 8 bits): 1=input, 0=output
 2 Mode selection: 0=MODE#0, 1=MODE#1
 3 Port C (hi 4 bits): 1=input, 0=output
 4 Port A (all 8 bits): 1=input, 0=output
 _
 5 |_ 00 = MODE#0 (basic I/O)
 6 _| 01 = MODE#1 (strobed I/O)
 1x = MODE#2 (bidirectional bus)

 7 Mode set flag (1=active, 0=normal)

 No initialization is required to achieve 24 bits of input, which
 is the default; during reset, all ports are programmed to be inputs.

 The control register must be programmed before doing any I/O
 with the three ports A,B and C. Example values for the
 Control Register:

 0x80 - A,B,C outputs
 0x9b - A,B,C inputs
 0x92 - A+B input, C=output

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

161

8255 PROGRAMMING EXAMPLES
 Here's a C programming example that shows how to setup the 8255
 such that A+B are inputs, and C is outputs:

 /* INITIALIZATION */
 base = 0x310;
 out(base+3), 0x92; /* A+B=in, C=out */
 /* READ/WRITE */
 if (inp(base+0) & 0x01) /* read A */
 printf("Bit #1 set on port A\n");
 else
 printf("Bit #1 clear on port A\n");
 /* SET PORT C, BIT #1 */
 out(base+2, inp(base+2) | 0x01); /* write C */

 This example shows similar 8255 programming example
 in the OPCS system's HOMEDEFS.HOM file, used by the HOME program:

 # homedefs.hom
 start init_8255
 {
 # INITIALIZATION
 outport 0313 92 # A+B=in, C=out

 # READ/WRITE
 portset? 0310 01 # test if bit 1 set on Port A
 {
 print "Bit #1 set on Port A"
 }
 portclr? 0310 01 # test if bit 1 clear on Port A
 {
 print "Bit #1 clear on Port A"
 }

 # SET PORT C, BIT #1
 setbit 0312 01
 }
 end init_8255

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

162

8255 CHIP PINOUT
 The 82C55A is most commonly found in a 40 pin DIP.

 82C55A
 Top View
 _____ _____
 | \/ |
 PA3 [| 1 40 |] PA4
 PA2 [| 2 39 |] PA5
 PA1 [| 3 38 |] PA6
 PA0 [| 4 37 |] PA7
 RD [| 5 36 |] WR
 CS [| 6 35 |] RESET
 GND [| 7 34 |] D0
 A1 [| 8 33 |] D1
 A0 [| 9 32 |] D2
 PC7 [| 10 31 |] D3
 PC6 [| 11 30 |] D4
 PC5 [| 12 29 |] D5
 PC4 [| 13 28 |] D6
 PC0 [| 14 27 |] D7
 PC1 [| 15 26 |] VCC
 PC2 [| 16 25 |] PB7
 PC3 [| 17 24 |] PB6
 PB0 [| 18 23 |] PB5
 PB1 [| 19 22 |] PB4
 PB2 [| 20 21 |] PB3
 |____________|

8255 PORT MONITOR PROGRAM
 The OPCS software comes with 8255.exe which can monitor the
 real time status of the 8255's I/O ports.

 Run '8255.exe' with the hex base address as the first argument:

 C:\OPCS\WORK> 8255.EXE 0310
 -------- ----
 | |
 | Base address argument
 |
 Runs the 8255 program, usually in
 the \OPCS\BIN directory.

 This tool can be downloaded from https://seriss.com/opcs/ftp/
 and the source code on githib at https://github.com/erco77/8255-dos/

CONTROL REGISTER: BASE+3

 The control register is a single 8 bit port whose byte defines the
 I/O direction of all three 8 bit I/O ports A,B,C, and the mode for
 that I/O, modes 0,1 and 2 are supported by the 8255 chips.

 The control register for each 8255 should be programmed on boot
 or OPCS startup to define whether ports A, B and C are inputs
 or outputs.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

163

 Initializing the control register can be done using the "home"
 program, creating a special entry in the HOMEDEFS.HOM file
 to initialize the port (see example below), and then invoking
 "home 8255_init" during the AUTOEXEC.BAT or via the OPCSDEFS.OPC
 setup file that's run when OPCS starts.

 Example 8255 init using HOMEDEFS.HOM, where the base address
 for the 8255 is 0200:

 1. Create a new entry called 'init_8255' in the HOMEDEFS.HOM file:

 # Initialize the 8255 CIO/DIO board
 start init_8255
 {
 outport 0203 9b # program the 8255 Control Register
 }
 end init_8255

 Replace 0203 with the base address+3 of your 8255 board,
 and replace '9b' with the Control Register value appropriate
 for your setup, as it defines which ports are input vs. output.

 See the table below "Control Register - "Mode 0" Operation"
 for a list of all the possible I/O configuration control
 register values.

 2. Create an entry in either the AUTOEXEC.BAT file, or the batch
 file you use to start OPCS, using:

 home init_8255

 ..which programs the 8255's control register based on the
 above HOMEDEFS.HOM file entry.

 Note that individual bits can NOT BE programmed separately;

 > Port A can be programmed to either be "all in" or "all out"
 > Same for Port B
 > Port C, the LOWER and UPPER 4 bits can be controlled
 separately for Input or Output.

 I strongly suggest referring to the 8255 and/or 82C55 data sheets
 for authoritative information about how to program the 8255 for
 I/O. Secondarily the manual for the CIO-DIO48 ISA card.

 What follows below is my reduction of those docs. (erco@seriss.com)

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

164

Control Register - "Mode 0" Operation

 This document ONLY covers "Mode 0" of the 8255, which is simple
 "real time I/O" for all ports. Mode 1 (Strobed I/O) and Mode 2
 (Bi-Directional Bus) are not covered here. For more info on those
 features, refer to the 8255 data sheet.

 Group A Group B
 I/O Ctrl I/O Ctrl
 ______ _____
 / \ / \
 ___________ _______ ___ _______ _________________ _________________ ___
 | | | | GROUP | | GROUP | GROUP A | GROUP B | | | |
 |MS |M3 |M2 | A |M1 | B |_________________|_________________| |
 |___|___|___|_______|___|_______| | | | |Ctl|
 |D7 |D6 |D5 |D4 |D3 |D2 |D1 |D0 |PORT A|PORT C(HI)|PORT B|PORT C(LO)|Reg|
 |---|---|---|---|---|---|---|---|------|----------|------|----------|---|
 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | OUT | OUT | OUT | OUT |80 |
 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | OUT | OUT | OUT | In |81 |
 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | OUT | OUT | In | OUT |82 |
 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | OUT | OUT | In | In |83 |
 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | OUT | In | OUT | OUT |88 |
 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | OUT | In | OUT | In |89 |
 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | OUT | In | In | OUT |8A |
 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | OUT | In | In | In |8B |
 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | In | OUT | OUT | OUT |90 |
 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | In | OUT | OUT | In |91 |
 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | In | OUT | In | OUT |92 |
 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | In | OUT | In | In |93 |
 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | In | In | OUT | OUT |98 |
 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | In | In | OUT | In |99 |
 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | In | In | In | OUT |9A |
 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | In | In | In | In |9B |

 /|\ /|\ /|\ /|\
 | | | |
 | | | All zeroes (for "Mode 0")
 | | All zeroes (for "Mode 0")
 | All zeroes (for "Mode 0")
 All ones (for "Mode 0")

 MS = Mode Set bit (hi bit of control register), must be 1 for "Mode 0"
 M3,M2,M1 = must all be 0 for "Mode 0".

 Here are all the possible 8 bit Control Register values (in HEX) to
 program Ports A,B,C in "Mode 0" for all possible Input/Output combinations:

 Control Register (HI 4) (LO 4)
 Value (hex) PORT A PORT C PORT B PORT C
 ---------------- ------- ------- ------- -------
 80 Out Out Out Out <- Port A,B,C=Out
 81 Out Out Out In
 82 Out Out In Out
 83 Out Out In In
 88 Out In Out Out
 89 Out In Out In
 8A Out In In Out
 8B Out In In In
 90 In Out Out Out
 91 In Out Out In
 92 In Out In Out <- Port A,B=In, C=Out
 93 In Out In In
 98 In In Out Out
 99 In In Out In
 9A In In In Out
 9B In In In In <- Port A,B,C=In

 (The above table is from the CIO-DIO48 ISA board manual for the 82C55)

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

165

 Put simply, the bit mask for the control register I/O control for Mode 0
 for ports A,B,C is:

 Data Bit Mask Description
 -------- ---- -----------
 D0 01h Port C(LO)
 D1 02h Port B
 D3 08h Port C(HI)
 D4 10h Port A

 NOTE: "D2" bit is skipped because it's the M1 mode bit

 So if the base address is 0310, one can program ports A,B and C
 of the first 24 bits of I/O to all be inputs using the C code:

 outp(0x0313, 0x9b); // Program ports A,B,C to be inputs

 And to read the input bits for ports A,B,C:

 int a_bits = inp(0x0310); // Read PORT A bits
 int b_bits = inp(0x0311); // Read PORT B bits
 int c_bits = inp(0x0312); // Read PORT C bits

 The same can be done for the second 24 bits of I/O, by simply adding 4
 to all the addresses above, e.g.

 outp(0x0317, 0x9b); // Program 8255#2 ports A,B,C to be inputs
 int a_bits = inp(0x0314); // Read second 8255 PORT A bits
 int b_bits = inp(0x0315); // Read second 8255 PORT B bits
 int c_bits = inp(0x0316); // Read second 8255 PORT C bits

 Similarly, if ports are programmed to be outputs, you can WRITE bits
 to ports A,B,C using outp() instead of inp().

 NOTE: According to the 8255 data sheet, the Control Register can ONLY be
 written to, and not read! In practice I've noticed 82C55 chips
 let you read the Control Register and see the last value set.

 The 8255.EXE program by default reads the Control Register
 to see how to present the I/O data, unless the user specified
 the Control Register value byte as the optional argument
 after the base address, e.g.

 8255.EXE 0310 9b
 -------- ---- --
 | | |
 | | Control Register value optional argument
 | |
 | Base address optional argument
 |
 Runs the 8255 program, usually in
 the \OPCS\BIN directory.

SEE ALSO
 CIODIO24(DOCS) - Docs on the 8255 based 24 channel Digital I/O card
 CIODIO48(DOCS) - Docs on the 8255 based 48 channel Digital I/O card

ORIGIN
 Gregory Ercolano, Topanga, California 04/12/00

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

166

nextstep(DOCS)

NextStep(DOCS) Optical Printer Control System NextStep(DOCS)

 NAME
 NextStep - NextStep micro stepping drives

 NEXTSTEP STATUS LAMPS

 These drives have four status lamps on the front at the top/left:

 "ON" - Grn=Legal power, Yel=Shutdown, Red=Overtemp
 "FLT" - Yel=Interlock unconnected, Red=Motor Short
 "BUS" - Yel(Solid)=Overvoltage, Yel(Flash)=Regen, Red=UnderVoltage
 "STEP" - Grn=Incoming Steps (CW), Yel=Incoming Steps (CCW)

 NEXTSTEP DIP SWITCHES

 The DIP switches along the front of the drive set the power
 and microstepping resolution:

 (FRONT)
 ┌───────────────────────────┐
 │ NextStep │
 │ │
 │ (ON) (FLT) │
 │ (BUS) (STEP) │
 │ │
 │ _ │
 │ (/) AMPS │
 │ _ │
 │ (/) AMPS/10 │
 │ │
 │ () OFFSET A │
 │ │
 │ () OFFSET B │ Drive
 │ _ │ Resolution ┌── Switches ──┐
 │ (/) ANTI-RES │
 │ ┌─────┐ │ (Standard) RES1 RES2 RES3
 │ ON│ o-- │ REST │ ---------- ---- ---- ----
 │ │ o-- │ IDLE │ 5,000 OFF OFF ON
 │ │ --o │ WAVEFORM │ 10,000 ON OFF ON
 │ │ o-- │ RES 1 │ 18,000 OFF ON ON
 │ │ --o │ RES 2 │ 20,000 ON ON ON
 │ │ --o │ RES 3 │ 25,000 OFF OFF OFF
 │ │ o-- │ LOW/HI mH │ 25,400 ON OFF OFF
 │ │ --o │ LOW/HI AntiRes │ 36,000 OFF ON OFF
 │ └─────┘ │ 50,000 ON ON OFF
 │ Industrial Devices Corp. │
 └───────────────────────────┘

 As an example, with SteppersOnline "M0-63-sized" 4.2 amp motors,
 these settings worked fine:

 REST: ON AMPS: "2" __ together=2.5 amp
 IDLE: ON AMPS/10: "5" / (low pow setting)
 WAVEFORM: OFF ANTI-RES: "8"
 LOW/HIGH mH: ON
 LOW/HIGH AntiRes: OFF

 NEXTSTEP STEP/DIR WIRING

 There are 3 optically isolated low voltage inputs: STP/DIR/SD
 There's one optically isolated low voltage output: FLT

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

167

 The three inputs are optocoupler inputs with two 100 ohm
 resistors in series as shown here:

 100 ohm ______
 STP + (/)-----o-----/\/\/-----o----->| |
 | |cap | |cap | OPTO | --> TO DRIVE
 STP - (/)-----o-----/\/\/-----o----->|______|
 100 ohm

 100 ohm ______
 DIR + (/)-----o-----/\/\/-----o----->| |
 | |cap | |cap | OPTO | --> TO DRIVE
 DIR - (/)-----o-----/\/\/-----o----->|______|
 100 ohm

 100 ohm ______
 SD + (/)-----o-----/\/\/-----o----->| |
 | |cap | |cap | OPTO | --> TO DRIVE
 SD - (/)-----o-----/\/\/-----o----->|______|
 100 ohm

 The one low voltage output is basically the output transistor
 of the optocoupler, when the drive indicates a fault condition.

 FLT + (/)<---------| |
 | OPTO | <-- FROM DRIVE
 FLT - (/)<---------|______|

 The input ratings are:
 > 5-15mA @5VDC
 > Setup Time=250nS (min on/off time)

 The output rating:
 > 50mA max, up to 30VDC.
 > Normally conducting.
 > Opens on fault.

 The optocouplers are "HCPL-2631", so you can look up the datasheet
 for the electrical particulars.

 NEXTSTEP MOTOR WIRING

 It is important that the top and bottom terminal screws labeled "INTLK"
 are wired *together*. Without this, the output amplifier is turned off
 (unlocking the motor) and the "FLT" light will be on. e.g.
 _
 INTLK (_)───┐
 B- (_) │
 B+ (_) │
 GND (_) │
 A- (_) │
 A+ (_) │
 INTLK (_)───┘

 The only other wiring needed is to the motor:

 o The B-/B+ to one coil
 o The A-/A+ to other coil

 If you swap the wires for the A pairs, it changes the motor direction.

 If the motor wire has a shield, it can be connected to the GND pin.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

168

 For 4 wire motors, it's simple and you can't really go wrong;
 either you get CW, CCW, or no motor turning. It's not possible
 to "short anything out" if you miswire the four motor coil wires
 to the four A+/A-/B+/B- terminals.

 For 6 wire motors, you can choose between SERIES or PARALLEL wiring;

 o SERIES uses lower power and generates lower heat
 o PARALLEL uses more power and generates more heat

 In the following diagram, the '3's are the motor coils,
 and the wire colors are for the IDC motors depicted in the manual.
 See the manual for more information.

 For SERIES wiring (low pow/low heat):

 (B-) ORN ------------. .------------ RED (A-)
 3 3
 3 3
 3 3
 .--WHT/ORN ---` `--- WHT/RED--.
 | |
 `--WHT/BLK ---. .--- WHT/YEL--`
 3 3
 3 3
 3 3
 (B+) BLK ------------` `------------ YEL (A+)

 For PARALLEL wiring (hi pow/hi heat):

 (B-) WHT/BLK ---o--------. .--------o--- WHT/YEL (A-)
 | 3 3 |
 ORN----. 3 3 .----RED
 3 3 3 3
 3 3 3 3
 3 3 3 3
 3 3 3 3
 3 3 3 3
 WHT/ORN--` 3 3 `--WHT/RED
 | 3 3 |
 (B+) WHT/ORN ---o--------` `--------o--- YEL (A+)

 AUTHOR
 Greg Ercolano / erco@seriss.com / May 14,2024

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

169

a800(DOCS)

A800(DOCS) Optical Printer Control System A800(DOCS)

NAME
 A800 - Seriss Corp. A800 stepper motor control card

DESCRIPTION
 The A800 card is a "short slot" ISA card for the IBM PC that can
 generate steps/direction pulse streams to control up to 8 stepper
 motors at once.

 The card uses two PIC chips to manage the stepper pulse generation.
 The PIC's firmware and MS-DOS driver "A800DRV.COM" source code are
 open source and available from:

 https://github.com/erco77/a800-opcs-pic-asm

 OPCS communicates with the A800 card by way of the MS-DOS device driver
 "A800DRV.COM", which provides a standard low level interface to the
 card that OPCS can make use of to run the motors efficiently.

 The A800DRV.COM driver must be loaded *before* running the OPCS
 software. This can be installed either by the AUTOEXEC.BAT,
 or by a separate batch script that invokes OPCS.

 If the A800 card's jumpers are default (BaseAddr=300 and IRQ=5),
 then you can install the driver with just:

 a800drv

CONFIGURING THE BASEADDR AND IRQ
 In OPCS K1.xx, the a800 card did not exist and is not supported.

 In OPCS K2.00 through K2.09, the base address is configured in
 OPCSDEFS.OPC with the 'baseaddr' command. IRQ not configurable.

 In OPCS K2.10 and up, the A800DRV.COM driver allows both the
 base address and IRQ to be configured on the command line.
 The default would be:

 a800drv -b300 -i5 <-- Sets base address=0300h, IRQ=5
 | |
 | IRQ=5
 Base Addr=300

 ..and if your A800 jumpers are set differently, then specify
 matching values accordingly. e.g. if the card's jumpers are
 set to BaseAddr=340 and IRQ=6, then start the driver with:

 a800drv -b340 -i6

 To list the A800DRV driver's options, run 'a800drv -help'.
 If it does not show a list of options, then it is an older version
 that does not support command line options.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

170

TECHNICAL SYNOPSIS
 When the software wants to move a motor, it provides 8 separate
 12 bit velocity values, one per motor channel. And 107 of these
 velocity values are sent per second to the card using the hardware
 interrupt on IRQ 5.

 Currently only 8 bits of the 12bit value are used for motor speeds.
 i.e. the lowest velocity is 1 (107 Hz) and the highest velocity is
 255 (27,285 Hz). Values above 255 are clipped by the hardware,
 as the PIC chips are limited by their speed. The high bit (0x8000)
 is the motor direction bit; 0=forward, 1=reverse.

 The software has to keep up with this transmission rate, otherwise
 it will lose track of the motor positions. The A800DRV.COM device
 driver provides a 64k ring buffer for the motor velocities that OPCS
 updates in real time while the motors are running.

 The OPCS software and A800DRV.COM use INT 99h to intercommunicate,
 providing the address of the ring buffer, and start/stop commands.

 The A800 card generates 107 interrupts per second to the A800DRV.COM
 driver, each interrupt feeds 8 velocities from the tail of the ring
 buffer to the A800 card, and increments the tail's index to point
 to the next 8 values in the ring buffer. Meanwhile, the OPCS software
 feeds velocities into the head of the ring buffer, always keeping ahead
 of the tail. If the tail catches up to the head prematurely, this
 causes a SYNC FAULT error, which should never happen unless something
 is wrong with the computer.

OPCS A800 CARD
==============
This card controls 8 axes and is a half sized IBM PC ISA card.
For complete info on this card, see: http://seriss.com/opcs/a800

 *** A800 ***

 | _____ __________ __________ A800 |
 ||16Mhz| | CPU2 | | CPU1 | REV-A1 |
 ||Xtal | |__________| |__________| ____|_
 ||_____| ____ 74HCT04 | | | | |
 | | | ______ | | |
 | |8255| |______| | | |
 | | | ______ | | | DB-37
 | BASE | | |______| | | | Connector
 | ______ ADDR | | ______ | | | | | | |
 | |______| :: IRQ | | |______| | | |
 | _______ :: :: | | | | |
 | |_______| :: :: |____| |____|_|
 | :: :: |
 |_________________________ ___|
 |...................|
 ||||||||||||||||||||

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

171

 DB-37 Connector (similar to Kuper):

 PIN# SIGNAL PIN SIGNAL

 1 - N/C 20 - +5VDC
 2 - STEP A 21 - DIR A
 3 - STEP B 22 - DIR B
 4 - STEP C 23 - DIR C
 5 - STEP D 24 - DIR D
 6 - STEP E 25 - DIR E
 7 - STEP F 26 - DIR F (*) = JP3 configures DB37 Pin#19:
 8 - STEP G 27 - DIR G "+5" - Makes Pin #19 +5 VDC
 9 - STEP H 28 - DIR H "GND" - Makes Pin #19 GND (default)
 10 - N/C 29 - N/C
 11 - N/C 30 - N/C
 12 - N/C 31 - N/C NOTE: When fitted with 74LS07 chips,
 13 - N/C 32 - N/C outputs are OPEN COLLECTOR TTL.
 14 - N/C 33 - N/C
 15 - N/C 34 - N/C When those chips are replaced with
 16 - N/C 35 - N/C 74ALS1034N, outputs swing a full
 17 - N/C 36 - N/C +5/GND and are CMOS/TTL compatible.
 18 - N/C 37 - N/C
 19 - GND(*)

BASE ADDRESS (JP1)
==================
 Closeup of the 'BASE ADDRESS' jumpers (JP1), which sets the base
 address of the 8255 chip's I/O port registers:

 | BASE ADDR |
 |___________|
 | |
 | 200 o o |
 | 240 o o |
 | 280 o o |
 | 2C0 o o |
 | 300 o o <-- Default jumper for 300 across these two pins
 | 340 o o |
 | 380 o o |
 | 3C0 o o |
 |___________|
 JP1

 A800 Base Address Jumpers

 Always defer to the board's labeling (if any), as the board
 designs may have changed since this document's writing (May 2020).

 DEFAULTS:
 This board has labels for the BASE ADDRESS and IRQs:
 "300" is the default base address (5th pair of pins from top jumpered).
 "IRQ5" is the default IRQ (4th pair of pins from top jumpered).

DB-37 OUTPUT SIGNALS
====================
 The STEPS output are normally high (+5) during idle,
 and fall low (GND) to pulse the motor a single step.

 The outputs for DIR (direction) are logic hi (+5) for forward,
 and logic low (GND) for reverse.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

172

 The output signals can either be CMOS hi/low levels, or can be
 "open collector" (where logic 'hi' is 'open', and logic low is gnd).
 Which it is depends on the chips installed in the three chip positions
 to the left of the DB-37 connector on the A800 board:

 74HCT04 -- CMOS high/low levels (default)
 74LS07 -- Open Collector

 For controlling the modern DM542 and FMD27400 motor drivers,
 the 74HCT04 chips are recommended in these positions.

 For Centent and Gecko drives, traditionally 74LS07 chips were used,
 but will probably also work with the 74HCT04's.

 While both chips work on all drives, analysis with an oscilloscope
 monitoring the stepper drive inputs may reveal one chip is better
 than the other for noise reduction. With 6' cables, 74HCT04 seems
 the best choice.

 Always defer to the board's silk screen labeling, as the board
 designs may change since this document's writing (May 2020).

HISTORY
 Greg Ercolano designed this card in May/June 2020, and the driver
 software, A800DRV.COM. This card uses "PIC chips", which are
 programmed with firmware written in the processor's native assembly
 language for speed and consistent timing for generating the steps
 and direction motor signals.

SEE ALSO
 RTMC16(DOCS) - notes on the Kuper Controls RTMC16 motor control card
 RTMC48(DOCS) - notes on the Kuper Controls RTMC48 motor control card
 8255(DOCS) - how to control 8255 based digital I/O cards
 KUPER(DOCS) - documentation on the kuper card connectors
 SD-800(DOCS) - 8 channel stepper distribution board (simplify DB-37 wiring)
 SD-1600(DOCS) - 16 channel stepper distribution board (simplify DB-37 wiring)

ORIGIN
 Gregory Ercolano, Alhambra, California 06/01/20

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

173

ascii(DOCS)

ASCII(7) Linux Programmer's Manual ASCII(7)

NAME
 ascii - the ASCII character set encoded in octal, decimal, and hex

DESCRIPTION
 ASCII is the American Standard Code for Information Interchange. It is
 a 7-bit code. Many 8-bit codes (such as ISO 8859-1, the Linux default
 character set) contain ASCII as their lower half. The international
 counterpart of ASCII is known as ISO 646.

 The following table contains the 128 ASCII characters.

 C program '\X' escapes are noted.

 Oct Dec Hex Char Oct Dec Hex Char
 --
 000 0 00 NUL '\0' 100 64 40 @
 001 1 01 SOH (start of heading) 101 65 41 A
 002 2 02 STX (start of text) 102 66 42 B
 003 3 03 ETX (end of text) 103 67 43 C
 004 4 04 EOT (end of transmission) 104 68 44 D
 005 5 05 ENQ (enquiry) 105 69 45 E
 006 6 06 ACK (acknowledge) 106 70 46 F
 007 7 07 BEL '\a' (bell) 107 71 47 G
 010 8 08 BS '\b' (backspace) 110 72 48 H
 011 9 09 HT '\t' (horizontal tab) 111 73 49 I
 012 10 0A LF '\n' (new line) 112 74 4A J
 013 11 0B VT '\v' (vertical tab) 113 75 4B K
 014 12 0C FF '\f' (form feed) 114 76 4C L
 015 13 0D CR '\r' (carriage ret) 115 77 4D M
 016 14 0E SO (shift out) 116 78 4E N
 017 15 0F SI (shift in) 117 79 4F O
 020 16 10 DLE (data link escape) 120 80 50 P
 021 17 11 DC1 (device control 1) 121 81 51 Q
 022 18 12 DC2 (device control 2) 122 82 52 R
 023 19 13 DC3 (device control 3) 123 83 53 S
 024 20 14 DC4 (device control 4) 124 84 54 T
 025 21 15 NAK (negative ack.) 125 85 55 U
 026 22 16 SYN (synchronous idle) 126 86 56 V
 027 23 17 ETB (end of trans. blk) 127 87 57 W
 030 24 18 CAN (cancel) 130 88 58 X
 031 25 19 EM (end of medium) 131 89 59 Y
 032 26 1A SUB (substitute) 132 90 5A Z
 033 27 1B ESC (escape) 133 91 5B [
 034 28 1C FS (file separator) 134 92 5C \
 035 29 1D GS (group separator) 135 93 5D]
 036 30 1E RS (record separator) 136 94 5E ^
 037 31 1F US (unit separator) 137 95 5F _
 040 32 20 SPACE 140 96 60 `
 041 33 21 ! 141 97 61 a
 042 34 22 " 142 98 62 b
 043 35 23 # 143 99 63 c
 044 36 24 $ 144 100 64 d
 045 37 25 % 145 101 65 e
 046 38 26 & 146 102 66 f
 047 39 27 ? 147 103 67 g
 050 40 28 (150 104 68 h
 051 41 29) 151 105 69 i
 052 42 2A * 152 106 6A j
 053 43 2B + 153 107 6B k
 054 44 2C , 154 108 6C l
 055 45 2D - 155 109 6D m
 056 46 2E . 156 110 6E n
 057 47 2F / 157 111 6F o
 060 48 30 0 160 112 70 p
 061 49 31 1 161 113 71 q
 062 50 32 2 162 114 72 r

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

174

 063 51 33 3 163 115 73 s
 064 52 34 4 164 116 74 t
 065 53 35 5 165 117 75 u
 066 54 36 6 166 118 76 v
 067 55 37 7 167 119 77 w
 070 56 38 8 170 120 78 x
 071 57 39 9 171 121 79 y
 072 58 3A : 172 122 7A z
 073 59 3B ; 173 123 7B {
 074 60 3C < 174 124 7C |
 075 61 3D = 175 125 7D }
 076 62 3E > 176 126 7E ~
 077 63 3F ? 177 127 7F DEL

 Here's the full 256 byte IBM PC character set (ISO-8859, CP-47):

Oct Dec Hex Char Oct Dec Hex Char
000 000 00 ? 200 128 80 Ç
001 001 01 ☺ 201 129 81 ü
002 002 02 ☻ 202 130 82 é
003 003 03 ♥ 203 131 83 â
004 004 04 ♦ 204 132 84 ä
005 005 05 ♣ 205 133 85 à
006 006 06 ♠ 206 134 86 å
007 007 07 <BELL> 207 135 87 ç
010 008 08 <BACKSPACE> 210 136 88 ê
011 009 09 <TAB> 211 137 89 ë
012 010 0a <LF> 212 138 8a è
013 011 0b <VTAB> 213 139 8b ï
014 012 0c <FF> 214 140 8c î
015 013 0d <CR> 215 141 8d ì
016 014 0e ♫ 216 142 8e Ä
017 015 0f ☼ 217 143 8f Å
020 016 10 ► 220 144 90 É
021 017 11 ◄ 221 145 91 æ
022 018 12 ↕ 222 146 92 Æ
023 019 13 ‼ 223 147 93 ô
024 020 14 ¶ 224 148 94 ö
025 021 15 § 225 149 95 ò
026 022 16 ▬ 226 150 96 û
027 023 17 ↨ 227 151 97 ù
030 024 18 ↑ 230 152 98 ÿ
031 025 19 ↓ 231 153 99 Ö
032 026 1a <EOF> 232 154 9a Ü
033 027 1b <ESC> 233 155 9b ¢
034 028 1c ∟ 234 156 9c £
035 029 1d ↔ 235 157 9d ¥
036 030 1e ▲ 236 158 9e ₧
037 031 1f ▼ 237 159 9f ƒ
040 032 20 240 160 a0 á
041 033 21 ! 241 161 a1 í
042 034 22 " 242 162 a2 ó
043 035 23 # 243 163 a3 ú
044 036 24 $ 244 164 a4 ñ
045 037 25 % 245 165 a5 Ñ
046 038 26 & 246 166 a6 ª
047 039 27 ' 247 167 a7 º
050 040 28 (250 168 a8 ¿
051 041 29) 251 169 a9 ⌐
052 042 2a * 252 170 aa ¬
053 043 2b + 253 171 ab ½
054 044 2c , 254 172 ac ¼
055 045 2d - 255 173 ad ¡
056 046 2e . 256 174 ae «
057 047 2f / 257 175 af »
060 048 30 0 260 176 b0 ░
061 049 31 1 261 177 b1 ▒
062 050 32 2 262 178 b2 ▓
063 051 33 3 263 179 b3 │
064 052 34 4 264 180 b4 ┤
065 053 35 5 265 181 b5 ╡
066 054 36 6 266 182 b6 ╢
067 055 37 7 267 183 b7 ╖
070 056 38 8 270 184 b8 ╕
071 057 39 9 271 185 b9 ╣

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

175

072 058 3a : 272 186 ba ║
073 059 3b ; 273 187 bb ╗
074 060 3c < 274 188 bc ╝
075 061 3d = 275 189 bd ╜
076 062 3e > 276 190 be ╛
077 063 3f ? 277 191 bf ┐
100 064 40 @ 300 192 c0 └
101 065 41 A 301 193 c1 ┴
102 066 42 B 302 194 c2 ┬
103 067 43 C 303 195 c3 ├
104 068 44 D 304 196 c4 ─
105 069 45 E 305 197 c5 ┼
106 070 46 F 306 198 c6 ╞
107 071 47 G 307 199 c7 ╟
110 072 48 H 310 200 c8 ╚
111 073 49 I 311 201 c9 ╔
112 074 4a J 312 202 ca ╩
113 075 4b K 313 203 cb ╦
114 076 4c L 314 204 cc ╠
115 077 4d M 315 205 cd ═
116 078 4e N 316 206 ce ╬
117 079 4f O 317 207 cf ╧
120 080 50 P 320 208 d0 ╨
121 081 51 Q 321 209 d1 ╤
122 082 52 R 322 210 d2 ╥
123 083 53 S 323 211 d3 ╙
124 084 54 T 324 212 d4 ╘
125 085 55 U 325 213 d5 ╒
126 086 56 V 326 214 d6 ╓
127 087 57 W 327 215 d7 ╫
130 088 58 X 330 216 d8 ╪
131 089 59 Y 331 217 d9 ┘
132 090 5a Z 332 218 da ┌
133 091 5b [333 219 db █
134 092 5c \ 334 220 dc ▄
135 093 5d] 335 221 dd ▌
136 094 5e ^ 336 222 de ▐
137 095 5f _ 337 223 df ▀
140 096 60 ` 340 224 e0 α
141 097 61 a 341 225 e1 ß
142 098 62 b 342 226 e2 Γ
143 099 63 c 343 227 e3 π
144 100 64 d 344 228 e4 Σ
145 101 65 e 345 229 e5 σ
146 102 66 f 346 230 e6 µ
147 103 67 g 347 231 e7 τ
150 104 68 h 350 232 e8 Φ
151 105 69 i 351 233 e9 Θ
152 106 6a j 352 234 ea Ω
153 107 6b k 353 235 eb δ
154 108 6c l 354 236 ec ∞
155 109 6d m 355 237 ed φ
156 110 6e n 356 238 ee ε
157 111 6f o 357 239 ef ∩
160 112 70 p 360 240 f0 ≡
161 113 71 q 361 241 f1 ±
162 114 72 r 362 242 f2 ≥
163 115 73 s 363 243 f3 ≤
164 116 74 t 364 244 f4 ⌠
165 117 75 u 365 245 f5 ⌡
166 118 76 v 366 246 f6 ÷
167 119 77 w 367 247 f7 ≈
170 120 78 x 370 248 f8 °
171 121 79 y 371 249 f9 ∙
172 122 7a z 372 250 fa ·
173 123 7b { 373 251 fb √
174 124 7c | 374 252 fc ⁿ
175 125 7d } 375 253 fd ²
176 126 7e ~ 376 254 fe ■
177 127 7f ⌂ 377 255 ff

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

176

 Tables
 For convenience, let us give more compact tables in hex and decimal.

 2 3 4 5 6 7 30 40 50 60 70 80 90 100 110 120
 ------------- ---------------------------------
 0: 0 @ P ` p 0: (2 < F P Z d n x
 1: ! 1 A Q a q 1:) 3 = G Q [e o y
 2: " 2 B R b r 2: * 4 > H R \ f p z
 3: # 3 C S c s 3: ! + 5 ? I S] g q {
 4: $ 4 D T d t 4: " , 6 @ J T ^ h r |
 5: % 5 E U e u 5: # - 7 A K U _ i s }
 6: & 6 F V f v 6: $. 8 B L V ` j t ~
 7: ? 7 G W g w 7: % / 9 C M W a k u DEL
 8: (8 H X h x 8: & 0 : D N X b l v
 9:) 9 I Y i y 9: ? 1 ; E O Y c m w
 A: * : J Z j z
 B: + ; K [k {
 C: , < L \ l |
 D: - = M] m }
 E: . > N ^ n ~
 F: / ? O _ o DEL

NOTES
 History
 An ascii manual page appeared in Version 7 of AT&T UNIX.

 On older terminals, the underscore code is displayed as a left arrow,
 called backarrow, the caret is displayed as an up-arrow and the verti-
 cal bar has a hole in the middle.

 Uppercase and lowercase characters differ by just one bit and the ASCII
 character 2 differs from the double quote by just one bit, too. That
 made it much easier to encode characters mechanically or with a non-
 microcontroller-based electronic keyboard and that pairing was found on
 old teletypes.

 The ASCII standard was published by the United States of America Stan-
 dards Institute (USASI) in 1968.

SEE ALSO
 iso_8859-1(7), iso_8859-10(7), iso_8859-13(7), iso_8859-14(7),
 iso_8859-15(7),iso_8859-16(7), iso_8859-2(7), iso_8859-3(7),
 iso_8859-4(7), iso_8859-5(7), iso_8859-6(7), iso_8859-7(7),
 iso_8859-8(7), iso_8859-9(7)

COLOPHON
 This page is part of release 3.22 of the Linux man-pages project. A
 description of the project, and information about reporting bugs, can
 be found at http://www.kernel.org/doc/man-pages/.

Linux 2009-02-12 ASCII(7)

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

177

centent(DOCS)

CENTENT(DOCS) Optical Printer Control System CENTENT(DOCS)

 NAME
 centent - centent stepper motor drive wiring

 CENTENT MOTOR WIRING

 These pinouts are straight out of the Centent CNO143 manual.
 Quothe the Centent docs:

 "One motor winding connects to T3 and T4, while the other
 winding connects to T5 and T6. The step motor drive will
 operate 4, 6, and 8 wire motors. The 6 and 8 wire motors
 may be wired in either a series (low power) or parallel
 (hi power) configuration. For 8 wire motors, follow the
 manufacturer's hookup diagrams for series or parallel
 operation." (See below)

 In the following table, T3, T4, T5 and T6 refer to the numbered
 terminals on the drive. Colors indicate the wire colors that
 come off the motor shown.

 *** SERIES WIRING - CNO-143 ***

 Manufacturer T3 T4 T5 T6
 ----------------- ------- ------- ------- -------
 Superior Electric GRN/WHT GRN RED RED/WHT
 Rapidsyn GRN/WHT GRN RED RED/WHT
 IMC GRN/WHT GRN RED RED/WHT
 Sigma YEL RED BLK ORN
 Oriental Motor BLU RED BLK GRN
 Portescap YEL/WHT RED ORN/WHT BRN
 Bodine YEL RED BRN ORN
 Digital Motor YEL RED BLK ORN
 Warner RED YEL ORN BRN
 Japan Servo YEL GRN BLU RED

 *** PARALLEL WIRING - CNO-143 ***

 Manufacturer T3 T4 T5 T6
 ----------------- ------- ------- ------- -------
 Superior Electric WHT GRN RED BLK
 Rapidsyn WHT GRN RED BLK
 IMC WHT GRN RED BLK
 Sigma RED/YEL RED ORN/BLK ORN
 Oriental Motor BLU WHT YEL GRN
 Portescap RED/WHT RED ORN/WHT ORN
 Bodine RED/WHT RED ORN/WHT ORN
 Digital Motor RED/WHT RED BLK BLK/WHT
 Warner RED WHT ORN BLK
 Japan Servo WHT GRN BLU WHT

 FIELD WIRING NOTES

 These are actual wiring diagrams I've used in the field.
 These are NOT from the Centent docs; use at own risk.
 Although these work, double check manufacturer's recommended
 wiring; see SLOSYN(DOCS) man page ('man slosyn') for info.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

178

 *** SERIES (LO POWER) ***
 *** CENTENT CNO-143 WIRING ***

 Superior Ele. Centent Superior Ele.
 8 wire motor CNO-143 6 wire motor
 ------------ ------- ------------
 wht/grn 3 wht/grn
 grn 4 grn
 red 5 red
 wht/red 6 wht/red
 (*) wht & blk NOT CONNECTED blk
 (*) wht/blk & orn NOT CONNECTED wht

 *** PARALLEL (HI POWER) ***
 *** CENTENT CNO-143 WIRING ***

 Superior Ele. Centent Superior Ele.
 8 wire motor CNO-143 6 wire motor
 ------------ ------- ------------
 (*) wht/blk & orn 3 wht
 grn 4 grn
 red 5 red
 (*) wht & blk 6 blk
 wht/grn x wht/grn
 wht/red x wht/red

 (*) 8 WIRE NOTE: With 8 wire connections, WHT and BLK are
 tied together, but are not connected to the drive. Also,
 WHT/BLK and ORN are similarly tied together.

 The following tables are for Superior Electric motors, and
 pretty much re-iterate the Centent docs, albeit clearer to
 my eyes:

 FULL WINDING (LO POWER) HALF WIRING (HI POWER)
 __________________________ __________________________
 | | CENTENT | MOTOR | | | CENTENT | MOTOR |
 | | DRIVE | WIRE | | | DRIVE | WIRE |
 | PHASE | TERMINAL | COLOR | | PHASE | TERMINAL | COLOR |
 |-------|----------|-------| |-------|----------|-------|
 | "A" | 3 |GRN/WHT| | "A" | 3 | WHT |
 | "B" | 4 | GRN | | "B" | 4 | GRN |
 | "C" | 5 |RED/WHT| | "C" | 5 | BLK |
 | "D" | 6 | RED | | "D" | 6 | RED |
 |_______|__________|_______| |_______|__________|_______|

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

179

ciodio24(DOCS)

CIODIO24(DOCS) Optical Printer Control System CIODIO24(DOCS)

NAME
 CIO-DIO24 - Docs for the CIO-DIO24 (8255 based) Digital I/O Card

DESCRIPTION
 The CIO-DIO24 is an ISA 8255 based Digital I/O card,
 available from http://www.computerboards.com/

 This board is an ISA 8255 Digital I/O board with selectable
 port base address.

CIO-DIO24 PINOUT AND SWITCH SETTINGS

 CIO-DIO24
 Male DB37

 (LEFT ROW) (RIGHT ROW)
 Pin Description Pin Description
 --- ----------- --- -----------
 19 GND |\ 37 A0
 18 +5 | \ 36 A1
 17 GND | | 35 A2
 16 +12 | | 34 A3
 15 GND | | 33 A4
 14 -12 | | 32 A5
 13 GND | | 31 A6
 12 -5 | | 30 A7
 11 GND | | 29 B0
 10 B0 | | 28 B1
 9 B1 | | 27 B2
 8 B2 | | 26 B3
 7 B3 | | 25 B4
 6 B4 | | 24 B5
 5 B5 | | 23 B6
 4 B6 | | 22 B7
 3 B7 | | 21 GND
 2 IR/ENA | / 20 +5
 1 IR/IN |/

 CIO-DIO24 DIP SWITCH (PORT BASE ADDRESS SET)
 --
 Factory default setting is '300' (hex) for the dip switches;
 9 & 8 down. Switches are active when in the 'down' position.

 Factory Default Base Address 0300

 9 8 7 6 5 4 3 2 1
 .------------------------------.
 | _ _ _ _ _ _ _ |
 | | | [_][_][_][_][_][_][] | | | | | | | |
 | | | | | | | | | | |
 | [_][_] | | | | | | | |
 |______________________________|
 | | | | | | | | |
 | | | | | | | | N/A
 | | | | | | | N/A
 | | | | | | +80
 | | | | | +10
 | | | | +20
 | | | +40
 | | +80
 | +100
 +200

 NOTE: Switches are active or "ON" in the 'down' position on these boards.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

180

 To avoid conflict with stepper pulse boards like the Kuper RTMC16,
 RTMC48, and the OPCS A800 boards, it's best to use 0310 instead, e.g.

 BASE ADDRESS 0310
 (Avoids conflict with RTMC and A800)

 9 8 7 6 5 4 3 2 1
 .------------------------------.
 | _ _ _ _ _ _ |
 | | | [_][_][_] | [_][_][] | | | | | | |
 | | | | | | | | | | |
 | [_][_] | | | [_] | | | |
 |______________________________|

 So if the board's base address is 0310, then the address of
 the 8255 chip is assigned this way:

 Base
 Description Address Offset
 ------------------- ------- ----------
 Port A 0310 BaseAddr+0
 Port B 0311 BaseAddr+1
 Port C 0312 BaseAddr+2
 I/O Control Register 0313 BaseAddr+3

 See below for a description of the possible values for the
 "I/O Control Register".

8255 CHIP DOCS
 The following are the docs for the onboard 8255 chip.

8255 PORTS
 The 8255 family of chips (82C55, etc) are usually one chip
 solutions to getting 24 bits of programmable digital I/O.

 Typically, the chip is configured at a base I/O address,
 such as 0310.

 There are four ports (base+0, base+1, base+2 and base+3)
 that are used to control the chip:

 base+0 - PORT #A
 base+1 - PORT #B
 base+2 - PORT #C
 base+3 - CONTROL REGISTER

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

181

8255 PROGRAMMING
 The "control register" controls the I/O direction of the 3 ports,
 and breaks out as follows:

 Bit Description
 --- --
 0 Port C (low 4 bits): 1=input, 0=output
 1 Port B (all 8 bits): 1=input, 0=output
 2 Mode selection: 0=MODE#0, 1=MODE#1
 3 Port C (hi 4 bits): 1=input, 0=output
 4 Port A (all 8 bits): 1=input, 0=output
 _
 5 |_ 00 = MODE#0 (basic I/O)
 6 _| 01 = MODE#1 (strobed I/O)
 1x = MODE#2 (bidirectional bus)

 7 Mode set flag (1=active, 0=normal)

 No initialization is 'required' to achieve 24 bits of input;
 it's the default. During reset, all ports are programmed to be inputs.

 The control register must be programmed before doing any I/O
 with the three ports A,B and C. Example values for the
 Control Register:

 0x80 - A,B,C outputs
 0x9b - A,B,C inputs
 0x92 - A+B input, C=output

8255 PROGRAMMING EXAMPLES
 Here's a C programming example that shows how to setup the 8255
 such that A+B are inputs, and C is outputs:

 /* INITIALIZATION */
 base = 0x310;
 out(base+3), 0x92; /* A+B=in, C=out */
 /* READ/WRITE */
 if (inp(base+0) & 0x01) /* read A */
 printf("Bit #1 set on port A\n");
 else
 printf("Bit #1 clear on port A\n");
 /* SET PORT C, BIT #1 */
 out(base+2, inp(base+2) | 0x01); /* write C */

 This example shows similar 8255 programming example
 in the OPCS system's HOMEDEFS.HOM file, used by the HOME program:

 # homedefs.hom
 start init_8255
 {
 # INITIALIZATION
 outport 0313 92 # A+B=in, C=out

 # READ/WRITE
 portset? 0310 01 # test if bit 1 set on Port A
 {
 print "Bit #1 set on Port A"
 }
 portclr? 0310 01 # test if bit 1 clear on Port A
 {
 print "Bit #1 clear on Port A"
 }

 # SET PORT C, BIT #1
 setbit 0312 01
 }
 end init_8255

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

182

8255 CHIP PINOUT
 The 82C55A is most commonly found in a 40 pin DIP.

 82C55A
 Top View
 _____ _____
 | \/ |
 PA3 [| 1 40 |] PA4
 PA2 [| 2 39 |] PA5
 PA1 [| 3 38 |] PA6
 PA0 [| 4 37 |] PA7
 RD [| 5 36 |] WR
 CS [| 6 35 |] RESET
 GND [| 7 34 |] D0
 A1 [| 8 33 |] D1
 A0 [| 9 32 |] D2
 PC7 [| 10 31 |] D3
 PC6 [| 11 30 |] D4
 PC5 [| 12 29 |] D5
 PC4 [| 13 28 |] D6
 PC0 [| 14 27 |] D7
 PC1 [| 15 26 |] VCC
 PC2 [| 16 25 |] PB7
 PC3 [| 17 24 |] PB6
 PB0 [| 18 23 |] PB5
 PB1 [| 19 22 |] PB4
 PB2 [| 20 21 |] PB3
 |____________|

8255 PORT MONITOR PROGRAM
 The OPCS software comes with 8255.exe which can monitor the
 real time status of the 8255's I/O ports.

 Run '8255.exe' with the hex base address as the first argument:

 C:\OPCS\WORK> 8255.EXE 0310
 -------- ----
 | |
 | Base address argument
 |
 Runs the 8255 program, usually in
 the \OPCS\BIN directory.

 This tool can be downloaded from https://seriss.com/opcs/ftp/
 and the source code on githib at https://github.com/erco77/8255-dos/

CONTROL REGISTER: BASE+3

 The control register is a single 8 bit port whose byte defines the
 I/O direction of all three 8 bit I/O ports A,B,C, and the mode for
 that I/O, modes 0,1 and 2 are supported by the 8255 chips.

 The control register for each 8255 should be programmed on boot
 or OPCS startup to define whether ports A, B and C are inputs
 or outputs.

 Initializing the control register can be done using the "home"
 program, creating a special entry in the HOMEDEFS.HOM file
 to initialize the port (see example below), and then invoking
 "home 8255_init" during the AUTOEXEC.BAT or via the OPCSDEFS.OPC
 setup file that's run when OPCS starts.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

183

 Example 8255 init using HOMEDEFS.HOM, where the base address
 for the 8255 is 0200:

 1. Create a new entry called 'init_8255' in the HOMEDEFS.HOM file:

 # Initialize the 8255 CIO/DIO board
 start init_8255
 {
 outport 0203 9b # program the 8255 Control Register
 }
 end init_8255

 Replace 0203 with the base address+3 of your 8255 board,
 and replace '9b' with the Control Register value appropriate
 for your setup, as it defines which ports are input vs. output.

 See the table below "Control Register - "Mode 0" Operation"
 for a list of all the possible I/O configuration control
 register values.

 2. Create an entry in either the AUTOEXEC.BAT file, or the batch
 file you use to start OPCS, using:

 home init_8255

 ..which programs the 8255's control register based on the
 above HOMEDEFS.HOM file entry.

 Note that individual bits can NOT BE programmed separately;

 > Port A can be programmed to either be "all in" or "all out"
 > Same for Port B
 > Port C, the LOWER and UPPER 4 bits can be controlled
 separately for Input or Output.

 I strongly suggest referring to the 8255 and/or 82C55 data sheets
 for authoritative information about how to program the 8255 for
 I/O. Secondarily the manual for the CIO-DIO48 ISA card.

 What follows below is my reduction of those docs. (erco@seriss.com)

Control Register - "Mode 0" Operation

 This document ONLY covers "Mode 0" of the 8255, which is simple
 "real time I/O" for all ports. Mode 1 (Strobed I/O) and Mode 2
 (Bi-Directional Bus) are not covered here. For more info on those
 features, refer to the 8255 data sheet.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

184

 Group A Group B
 I/O Ctrl I/O Ctrl
 ______ _____
 / \ / \
 ___________ _______ ___ _______ _________________ _________________ ___
 | | | | GROUP |M1 | GROUP | GROUP A | GROUP B | | | |
 |MS |M3 |M2 | A | | B |_________________|_________________| |
 |___|___|___|_______|___|_______| | | | |Ctl|
 |D7 |D6 |D5 |D4 |D3 |D2 |D1 |D0 |PORT A|PORT C(HI)|PORT B|PORT C(LO)|Reg|
 |---|---|---|---|---|---|---|---|------|----------|------|----------|---|
 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | OUT | OUT | OUT | OUT |80 |
 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | OUT | OUT | OUT | In |81 |
 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | OUT | OUT | In | OUT |82 |
 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | OUT | OUT | In | In |83 |
 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | OUT | In | OUT | OUT |88 |
 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | OUT | In | OUT | In |89 |
 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | OUT | In | In | OUT |8A |
 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | OUT | In | In | In |8B |
 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | In | OUT | OUT | OUT |90 |
 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | In | OUT | OUT | In |91 |
 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | In | OUT | In | OUT |92 |
 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | In | OUT | In | In |93 |
 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | In | In | OUT | OUT |98 |
 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | In | In | OUT | In |99 |
 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | In | In | In | OUT |9A |
 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | In | In | In | In |9B |

 /|\ /|\ /|\ /|\
 | | | |
 | | | All zeroes (for "Mode 0")
 | | All zeroes (for "Mode 0")
 | All zeroes (for "Mode 0")
 All ones (for "Mode 0")

 MS = Mode Set bit (hi bit of control register), must be 1 for "Mode 0"
 M3,M2,M1 = must all be 0 for "Mode 0".

 Here are all the possible 8 bit Control Register values (in HEX) to
 program Ports A,B,C in "Mode 0" for all possible Input/Output combinations:

 Control Register (HI 4) (LO 4)
 Value (hex) PORT A PORT C PORT B PORT C
 ---------------- ------- ------- ------- -------
 80 Out Out Out Out <- Port A,B,C=Out
 81 Out Out Out In
 82 Out Out In Out
 83 Out Out In In
 88 Out In Out Out
 89 Out In Out In
 8A Out In In Out
 8B Out In In In
 90 In Out Out Out
 91 In Out Out In
 92 In Out In Out <- Port A,B=In, C=Out
 93 In Out In In
 98 In In Out Out
 99 In In Out In
 9A In In In Out
 9B In In In In <- Port A,B,C=In

 (The above table is from the CIO-DIO48 ISA board manual for the 82C55)

 Put simply, the bit mask for the control register I/O control for Mode 0
 for ports A,B,C is:

 Data Bit Mask Description
 -------- ---- -----------
 D0 01h Port C(LO)
 D1 02h Port B
 D3 08h Port C(HI)
 D4 10h Port A

 NOTE: "D2" bit is skipped because it's the M1 mode bit

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

185

 So if the base address is 0310, one can program ports A,B and C
 of the first 24 bits of I/O to all be inputs using the C code:

 outp(0x0313, 0x9b); // Program ports A,B,C to be inputs

 And to read the input bits for ports A,B,C:

 int a_bits = inp(0x0310); // Read PORT A bits
 int b_bits = inp(0x0311); // Read PORT B bits
 int c_bits = inp(0x0312); // Read PORT C bits

 The same can be done for the second 24 bits of I/O, by simply adding 4
 to all the addresses above, e.g.

 outp(0x0317, 0x9b); // Program 8255#2 ports A,B,C to be inputs
 int a_bits = inp(0x0314); // Read second 8255 PORT A bits
 int b_bits = inp(0x0315); // Read second 8255 PORT B bits
 int c_bits = inp(0x0316); // Read second 8255 PORT C bits

 Similarly, if ports are programmed to be outputs, you can WRITE bits
 to ports A,B,C using outp() instead of inp().

 NOTE: According to the 8255 data sheet, the Control Register can ONLY be
 written to, and not read! In practice I've noticed 82C55 chips
 let you read the Control Register and see the last value set.

 The 8255.EXE program by default reads the Control Register
 to see how to present the I/O data, unless the user specified
 the Control Register value byte as the optional argument
 after the base address, e.g.

 8255.EXE 0310 9b
 -------- ---- --
 | | |
 | | Control Register value optional argument
 | |
 | Base address optional argument
 |
 Runs the 8255 program, usually in
 the \OPCS\BIN directory.

ORIGIN
 Gregory Ercolano, Topanga, California 04/12/00

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

186

ciodio48(DOCS)

CIODIO48(DOCS) Optical Printer Control System CIODIO48(DOCS)

NAME
 CIO-DIO48 - Docs for the CIO-DIO48 (dual 8255 based) Digital I/O Card

DESCRIPTION
 The CIO-DIO48 is an ISA based Digital I/O card available from:
 http://www.computerboards.com/

 This board contains two 8255 chips that control 24 bits each for a total
 of 48 separate I/O signals.

 What follows are the CIO-DIO48 connector pinout, dip switch settings, and
 programming considerations.

BASE ADDRESS DIP SWITCH

 The "base address" of the CIO-DIO48 board determines what
 ports software uses to read, write, and configure the two 8255
 chips on the CIO-DIO48.

 Unlike "Plug and Play" PCI boards, the older ISA boards had to have
 their addresses configured manually by DIP switches.

 Factory default setting is '300' (hex) for the dip switches;
 9 & 8 down. Switches are active when in the 'down' position.

 Factory Default Base Address 0300

 9 8 7 6 5 4 3 <-- numbers stop at '3'
 .-------------------------.
 | _ _ _ _ _ |
 | | | [_][_][_][_][_] | | | | | |
 | | | | | | | | |
 | [_][_] | | | | | |
 |_________________________|
 | | | | | | |
 | | | | | | |
 | | | | | | |
 | | | | | | +80
 | | | | | +10
 | | | | +20
 | | | +40
 | | +80
 | +100
 +200

 NOTE: Switches are active or "ON" in the 'down' position on these boards.

 To avoid conflict with stepper pulse boards like the Kuper RTMC16,
 RTMC48, and the OPCS A800 boards, it's best to use 0310 instead, e.g.

 BASE ADDRESS 0310
 (Avoids conflict with RTMC and A800)

 9 8 7 6 5 4 3
 .-------------------------.
 | _ _ _ _ |
 | | | [_][_][_] | [_] | | | | |
 | | | | | | | | |
 | [_][_] | | | [_] | |
 |_________________________|

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

187

 So if the board's base address is 0310, then the address of
 the 8255 chip is assigned this way:

 Base
 Description Address Offset
 ------------------- ------- ---------- __
 Port A 0310 BaseAddr+0 |
 Port B 0311 BaseAddr+1 |_ 8255 #1
 Port C 0312 BaseAddr+2 |
 I/O Control Register 0313 BaseAddr+3 __|
 __
 Port A 0314 BaseAddr+4 |
 Port B 0315 BaseAddr+5 |_ 8255 #2
 Port C 0316 BaseAddr+6 |
 I/O Control Register 0317 BaseAddr+7 __|

 The I/O Control Register's values are described below,
 and define whether ports A/B/C are Inputs or Outputs.

50 PIN IDC CONNECTOR

 The CIO-DIO48 is really two 8255 chips on a single ISA board,
 each capable of managing 24 I/O bits for a total of 48.

 The 24 I/O bits of each 8255 is broken up into three separate
 8 bit ports "A", "B" and "C".

 The CIO-DIO48 card's 50 pin IDC connector pinout is:

 > Pins 01 - 24: First group of 24 bits
 > Pins 25 - 48: Second group of 24 bits
 > Pins 49(+5) and 50(GND) are power supply pins.

 Here's the complete pinout on the male connector, looking down
 at the connector's pins from the component side of the board:

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

188

 CIO-DIO48
 Male IDC 50 Pin Connector

 (LEFT ROW) (RIGHT ROW)
 Description Pin Pin Description
 ----------- --- --- -----------

 GND 50 | o o | 49 +5V __
 | | |
 C0 48 | o o | 47 C1 |
 | | |
 C2 46 | o o | 45 C3 | Port C
 | | | BASE+2
 C4 44 | o o | 43 C5 |
 | | |
 C6 42 | o o | 41 C7 __|
 | | __
 B0 40 | o o | 39 B1 |
 | | |
 B2 38 | o o | 37 B3 | Port B
 | | | BASE+1
 B4 36 | o o | 35 B5 |
 | | |
 B6 34 | o o | 33 B7 __|
 | | __
 A0 32 | o o | 31 A1 |
 | | |
 A2 30 | o o | 29 A3 | Port A
 | | | BASE+0
 A4 28 | o o | 27 A5 |
 | | |
 A6 26 | o o | 25 _ A7 __|
 | | __
 C0 24 | o o | 23 C1 |
 | | |
 C2 22 | o o | 21 C3 | Port C
 | | | BASE+6
 C4 20 | o o | 19 C5 |
 | | |
 C6 18 | o o | 17 C7 __|
 | | __
 B0 16 | o o | 15 B1 |
 | | |
 B2 14 | o o | 13 B3 | Port B
 | | | BASE+5
 B4 12 | o o | 11 B5 |
 | | |
 B6 10 | o o | 9 B7 __|
 | | __
 A0 8 | o o | 7 A1 |
 | | |
 A2 6 | o o | 5 A3 | Port A
 | | | BASE+4
 A4 4 | o o | 3 A5 |
 | | |
 A6 2 | o o | 1 A7 __|
 |_____|

 If the base address is 0310 (hex), then:
 _
 > I/O Port A is 0310 for pins 1 thru 8 |
 > I/O Port B is 0311 for pins 9 thru 16 |_ LOW
 > I/O Port C is 0312 for pins 17 thru 24 | 24 bits
 > Control register for these three ports is 0313 _|
 .
 _
 > I/O Port A is 0314 for pins 25 thru 32 |
 > I/O Port B is 0315 for pins 33 thru 40 |_ HIGH
 > I/O Port C is 0316 for pins 41 thru 48 | 24 bits
 > Control register for these three ports is 0317 _|

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

189

8255 CHIP DOCS
 The following are the docs for the onboard 8255 chip.

8255 PORTS
 The 8255 family of chips (82C55, etc) are usually one chip
 solutions to getting 24 bits of programmable digital I/O.

 Typically, the chip is configured at a base I/O address,
 such as 0310.

 There are four ports (base+0, base+1, base+2 and base+3)
 that are used to control the chip:

 base+0 - PORT #A
 base+1 - PORT #B
 base+2 - PORT #C
 base+3 - CONTROL REGISTER

8255 PROGRAMMING
 The "control register" controls the I/O direction of the 3 ports,
 and breaks out as follows:

 Bit Description
 --- --
 0 Port C (low 4 bits): 1=input, 0=output
 1 Port B (all 8 bits): 1=input, 0=output
 2 Mode selection: 0=MODE#0, 1=MODE#1
 3 Port C (hi 4 bits): 1=input, 0=output
 4 Port A (all 8 bits): 1=input, 0=output
 _
 5 |_ 00 = MODE#0 (basic I/O)
 6 _| 01 = MODE#1 (strobed I/O)
 1x = MODE#2 (bidirectional bus)

 7 Mode set flag (1=active, 0=normal)

 No initialization is 'required' to achieve 24 bits of input;
 it's the default. During reset, all ports are programmed to be inputs.

 The control register must be programmed before doing any I/O
 with the three ports A,B and C. Example values for the
 Control Register:

 0x80 - A,B,C outputs
 0x9b - A,B,C inputs
 0x92 - A+B input, C=output

8255 PROGRAMMING EXAMPLES
 Here's a C programming example that shows how to setup the 8255
 such that A+B are inputs, and C is outputs:

 /* INITIALIZATION */
 base = 0x310;
 out(base+3), 0x92; /* A+B=in, C=out */
 /* READ/WRITE */
 if (inp(base+0) & 0x01) /* read A */
 printf("Bit #1 set on port A\n");
 else
 printf("Bit #1 clear on port A\n");
 /* SET PORT C, BIT #1 */
 out(base+2, inp(base+2) | 0x01); /* write C */

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

190

 This example shows similar 8255 programming example
 in the OPCS system's HOMEDEFS.HOM file, used by the HOME program:

 # homedefs.hom
 start init_8255
 {
 # INITIALIZATION
 outport 0313 92 # A+B=in, C=out

 # READ/WRITE
 portset? 0310 01 # test if bit 1 set on Port A
 {
 print "Bit #1 set on Port A"
 }
 portclr? 0310 01 # test if bit 1 clear on Port A
 {
 print "Bit #1 clear on Port A"
 }

 # SET PORT C, BIT #1
 setbit 0312 01
 }
 end init_8255

8255 CHIP PINOUT
 The 82C55A is most commonly found in a 40 pin DIP.

 82C55A
 Top View
 _____ _____
 | \/ |
 PA3 [| 1 40 |] PA4
 PA2 [| 2 39 |] PA5
 PA1 [| 3 38 |] PA6
 PA0 [| 4 37 |] PA7
 RD [| 5 36 |] WR
 CS [| 6 35 |] RESET
 GND [| 7 34 |] D0
 A1 [| 8 33 |] D1
 A0 [| 9 32 |] D2
 PC7 [| 10 31 |] D3
 PC6 [| 11 30 |] D4
 PC5 [| 12 29 |] D5
 PC4 [| 13 28 |] D6
 PC0 [| 14 27 |] D7
 PC1 [| 15 26 |] VCC
 PC2 [| 16 25 |] PB7
 PC3 [| 17 24 |] PB6
 PB0 [| 18 23 |] PB5
 PB1 [| 19 22 |] PB4
 PB2 [| 20 21 |] PB3
 |____________|

8255 PORT MONITOR PROGRAM
 The OPCS software comes with 8255.exe which can monitor the
 real time status of the 8255's I/O ports.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

191

 Run '8255.exe' with the hex base address as the first argument:

 C:\OPCS\WORK> 8255.EXE 0310
 -------- ----
 | |
 | Base address argument
 |
 Runs the 8255 program, usually in
 the \OPCS\BIN directory.

 This tool can be downloaded from https://seriss.com/opcs/ftp/
 and the source code on githib at https://github.com/erco77/8255-dos/

CONTROL REGISTER: BASE+3

 The control register is a single 8 bit port whose byte defines the
 I/O direction of all three 8 bit I/O ports A,B,C, and the mode for
 that I/O, modes 0,1 and 2 are supported by the 8255 chips.

 The control register for each 8255 should be programmed on boot
 or OPCS startup to define whether ports A, B and C are inputs
 or outputs.

 Initializing the control register can be done using the "home"
 program, creating a special entry in the HOMEDEFS.HOM file
 to initialize the port (see example below), and then invoking
 "home 8255_init" during the AUTOEXEC.BAT or via the OPCSDEFS.OPC
 setup file that's run when OPCS starts.

 Example 8255 init using HOMEDEFS.HOM, where the base address
 for the 8255 is 0200:

 1. Create a new entry called 'init_8255' in the HOMEDEFS.HOM file:

 # Initialize the 8255 CIO/DIO board
 start init_8255
 {
 outport 0203 9b # program the 8255 Control Register
 }
 end init_8255

 Replace 0203 with the base address+3 of your 8255 board,
 and replace '9b' with the Control Register value appropriate
 for your setup, as it defines which ports are input vs. output.

 See the table below "Control Register - "Mode 0" Operation"
 for a list of all the possible I/O configuration control
 register values.

 2. Create an entry in either the AUTOEXEC.BAT file, or the batch
 file you use to start OPCS, using:

 home init_8255

 ..which programs the 8255's control register based on the
 above HOMEDEFS.HOM file entry.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

192

 Note that individual bits can NOT BE programmed separately;

 > Port A can be programmed to either be "all in" or "all out"
 > Same for Port B
 > Port C, the LOWER and UPPER 4 bits can be controlled
 separately for Input or Output.

 I strongly suggest referring to the 8255 and/or 82C55 data sheets
 for authoritative information about how to program the 8255 for
 I/O. Secondarily the manual for the CIO-DIO48 ISA card.

 What follows below is my reduction of those docs. (erco@seriss.com)

Control Register - "Mode 0" Operation

 This document ONLY covers "Mode 0" of the 8255, which is simple
 "real time I/O" for all ports. Mode 1 (Strobed I/O) and Mode 2
 (Bi-Directional Bus) are not covered here. For more info on those
 features, refer to the 8255 data sheet.

 Group A Group B
 I/O Ctrl I/O Ctrl
 ______ _____
 / \ / \
 ___________ _______ ___ _______ _________________ _________________ ___
 | | | | GROUP |M1 | GROUP | GROUP A | GROUP B | | | |
 |MS |M3 |M2 | A | | B |_________________|_________________| |
 |___|___|___|_______|___|_______| | | | |Ctl|
 |D7 |D6 |D5 |D4 |D3 |D2 |D1 |D0 |PORT A|PORT C(HI)|PORT B|PORT C(LO)|Reg|
 |---|---|---|---|---|---|---|---|------|----------|------|----------|---|
 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | OUT | OUT | OUT | OUT |80 |
 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | OUT | OUT | OUT | In |81 |
 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | OUT | OUT | In | OUT |82 |
 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | OUT | OUT | In | In |83 |
 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | OUT | In | OUT | OUT |88 |
 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | OUT | In | OUT | In |89 |
 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | OUT | In | In | OUT |8A |
 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | OUT | In | In | In |8B |
 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | In | OUT | OUT | OUT |90 |
 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | In | OUT | OUT | In |91 |
 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | In | OUT | In | OUT |92 |
 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | In | OUT | In | In |93 |
 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | In | In | OUT | OUT |98 |
 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | In | In | OUT | In |99 |
 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | In | In | In | OUT |9A |
 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | In | In | In | In |9B |

 /|\ /|\ /|\ /|\
 | | | |
 | | | All zeroes (for "Mode 0")
 | | All zeroes (for "Mode 0")
 | All zeroes (for "Mode 0")
 All ones (for "Mode 0")

 MS = Mode Set bit (hi bit of control register), must be 1 for "Mode 0"
 M3,M2,M1 = must all be 0 for "Mode 0".

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

193

 Here are all the possible 8 bit Control Register values (in HEX) to
 program Ports A,B,C in "Mode 0" for all possible Input/Output combinations:

 Control Register (HI 4) (LO 4)
 Value (hex) PORT A PORT C PORT B PORT C
 ---------------- ------- ------- ------- -------
 80 Out Out Out Out <- Port A,B,C=Out
 81 Out Out Out In
 82 Out Out In Out
 83 Out Out In In
 88 Out In Out Out
 89 Out In Out In
 8A Out In In Out
 8B Out In In In
 90 In Out Out Out
 91 In Out Out In
 92 In Out In Out <- Port A,B=In, C=Out
 93 In Out In In
 98 In In Out Out
 99 In In Out In
 9A In In In Out
 9B In In In In <- Port A,B,C=In

 (The above table is from the CIO-DIO48 ISA board manual for the 82C55)

 Put simply, the bit mask for the control register I/O control for Mode 0
 for ports A,B,C is:

 Data Bit Mask Description
 -------- ---- -----------
 D0 01h Port C(LO)
 D1 02h Port B
 D3 08h Port C(HI)
 D4 10h Port A

 NOTE: "D2" bit is skipped because it's the M1 mode bit

 So if the base address is 0310, one can program ports A,B and C
 of the first 24 bits of I/O to all be inputs using the C code:

 outp(0x0313, 0x9b); // Program ports A,B,C to be inputs

 And to read the input bits for ports A,B,C:

 int a_bits = inp(0x0310); // Read PORT A bits
 int b_bits = inp(0x0311); // Read PORT B bits
 int c_bits = inp(0x0312); // Read PORT C bits

 The same can be done for the second 24 bits of I/O, by simply adding 4
 to all the addresses above, e.g.

 outp(0x0317, 0x9b); // Program 8255#2 ports A,B,C to be inputs
 int a_bits = inp(0x0314); // Read second 8255 PORT A bits
 int b_bits = inp(0x0315); // Read second 8255 PORT B bits
 int c_bits = inp(0x0316); // Read second 8255 PORT C bits

 Similarly, if ports are programmed to be outputs, you can WRITE bits
 to ports A,B,C using outp() instead of inp().

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

194

 NOTE: According to the 8255 data sheet, the Control Register can ONLY be
 written to, and not read! In practice I've noticed 82C55 chips
 let you read the Control Register and see the last value set.

 The 8255.EXE program by default reads the Control Register
 to see how to present the I/O data, unless the user specified
 the Control Register value byte as the optional argument
 after the base address, e.g.

 8255.EXE 0310 9b
 -------- ---- --
 | | |
 | | Control Register value optional argument
 | |
 | Base address optional argument
 |
 Runs the 8255 program, usually in
 the \OPCS\BIN directory.

ORIGIN
 Gregory Ercolano, Alhambra, California 08/02/23

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

195

connectors(DOCS)

CONNECTOR(DOCS) Optical Printer Control System CONNECTOR(DOCS)

 NAME
 connector - misc connector wiring

*************** SUPERIOR ELECTRIC ************************
*************** 6 WIRE MOTOR CONNECTOR PINOUT ************************

 AMPHENOL (MILITARY STYLE) CONNECTOR WIRING
 Superior Electric, Astrosyn, Anaheim, Rapidsyn
 BACK OF MALE

 N O T C H

 RED | | BLK
 o |_| o

 WHT o o o WHT/GRN
 N.C.

 o o
 WHT/RED GRN

 6 PIN NYLON (MEDIUM DUTY) RADIO SHACK CONNECTOR
 Superior Electric, Astrosyn, Anaheim, Rapidsyn
 BACK OF MALE

 / |
 / GRN WHT |
 | |
 | /
 | \
 | |
 | G/W BLK |
 | |
 | /
 | \
 | |
 \ WHT RED |
 _______________|

 Back of Male

*************** SUPERIOR ELECTRIC ************************
*************** 8 WIRE MOTOR CONNECTOR PINOUT ************************

 AMPHENOL (MILITARY STYLE) CONNECTOR WIRING
 Superior Electric, Astrosyn, Anaheim, Rapidsyn

 BACK OF 8 WIRE MALE BACK OF 6 WIRE MALE
 N O T C H N O T C H

 G/W | | B/W & ORN RED | | BLK
 o |_| o o |_| o

BLK & WHT o o o R/W WHT o o o WHT/GRN
 N.C. N.C.

 o o o o
 GRN RED WHT/RED GRN

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

196

*************** CENTENT MOTOR DRIVE ********************
*************** 8 WIRE MOTOR CONNECTOR PINOUT ********************

 AMPHENOL (MILITARY STYLE) CONNECTOR WIRING
 Superior Electric, Astrosyn, Anaheim, Rapidsyn
 Centent terminals shown
 BACK OF FEMALE

 SERIES (LOW POWER) PARALLEL (HIGH POWER)

 N O T C H N O T C H

 x | | 5 6 | | 5
 o |_| o o |_| o

 3 o o o x x o o o 3
 N.C. N.C.

 o o o o
 4 6 4 x

 6 PIN NYLON (MEDIUM DUTY) RADIO SHACK CONNECTOR
 BACK OF FEMALE CONNECTORS
 Centent Terminals Shown

 FULL WINDING (LO POWER) HALF WINDING (HI POWER)

 ________________ ________________
 | \ | \
 | 4 5 \ | 4 X \
 | | | |
 \ | \ |
 / | / |
 | | | |
 | 3 X | | X 5 |
 | | | |
 \ | \ |
 / | / |
 | | | |
 | X 6 / | 3 6 /
 |______________/ |______________/

 Back of Female Back Of Female

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

197

ease(DOCS)

EASE(TOOLS) Optical Printer Control Systems EASE(TOOLS)

NAME
 ease - create ease in / out positions

SYNOPSIS
 ease file chans sfrm efrm spos epos eifrm eofrm [etype]

 file - the name of the position file
 chans - channels to effect. A channel can be any letter a thru l.
 Can be ranges like 'a-d', or comma delimited lists like
 'a,d,e' or combinations like 'a,d-j'.
 sfrm - starting frame of move
 efrm - ending frame of move
 spos - starting position
 epos - ending position
 eifrm - ease in # frames
 eofrm - ease out # frames
 etype - 1.0=linear ease, .25=hard ease(.75=default)

EXAMPLE
 ease foo.pos f 1 50 1000 2000 10 10
 ------- ---- ---- --------- -----
 File Chan Frms Positions Ease

DESCRIPTION
 ease creates moves (columns of numbers) in ascii OPCS position files.
 Given a range of frames and positions, ease(OPCS) will create
 smooth moves between two points.

 The move created between the positions has 3 parts:

 o
 ..'' |
 .' |
 ' |
 '| |
 ' | |
 ' | |
 ' | |
 ' | |
 ' | |
 ' | |
 ' | |
 .' | |
 ..'' | | |
 o...''' | | |
 |<--------->|<------>|<--------->|
 EaseIn Linear EaseOut
 Frames Frames Frames

 Exponential curves are used to achieve the ease-in and ease-outs.
 The linear section is a straight linear interpolation is created
 between the two ease curves.

 If the easein/easeout values are *zero*, then no ease curves are
 created, and an accurate straight linear move is made between the
 start and end positions. e.g.:

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

198

 o
 ,,''|
 ,,'' |
 ,,'' |
 ,,'' |
 ,,'' |
 ,,'' |
 ,,'' |
 ,,'' |
 ,,'' |
 ,,'' |
 o'' |
 |<-->|
 Linear
 (EaseIn=0) Frames (EaseOut=0)

POSITION FILES
 Position files are ASCII files that contain 12 positions per line.
 Each line represents a single frame of positions. Each vertical
 column of numbers represent a single channel. The left most column
 is the 'a' channel, the right most column is the 'l' channel.

 A position file:

 > May contain comment lines that start with '#' or ';'

 > Will be limited to 12 channels in width

 > Can only contain values that are long integers

 > Each column of numbers must be separated by white space

 > Blank lines are ignored

 > Can be any length. Position files are never loaded entirely
 into memory, so they can be extremely long files.

DEBUG
 To enable debugging, 'set EASEDEBUG=1' before running ease.

AUTHOR
 Greg Ercolano, Venice California 1998

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

199

gecko(DOCS)

GECKO(DOCS) Optical Printer Control System GECKO(DOCS)

 NAME
 gecko - gecko stepper motor drive wiring (201, 201X..)

 GECKO MOTOR WIRING

 Excerpts from Gecko 201 manual and other sources for actual wire colors.

 Motors rated phase current: 0.3 AMP - 7 AMP. Power supply voltage should
 be between 4x and 20x the motor rated voltage. The current set resistor
 may be 1/4W, 5%. Current set resistor goes across T11 and T12. Values:

 | HEATSINK OPTIONAL | HEATSINK REQUIRED |
 |----------------------------|--------------------------|
 | MOTOR RESISTOR | MOTOR RESISTOR |
 | CURRENT VALUE | CURRENT VALUE |
 | ------- -------- | ------- -------- |
 | 1.0 AMP 7.8K | 4.0 AMP 62.7K |
 | 1.5 AMP 12.8K | 4.5 AMP 84.6K |
 | 2.0 AMP 18.8K | 5.0 AMP 117.5K |
 | 2.5 AMP 26.1K | 5.5 AMP 172.3K |
 | 3.0 AMP 35.2K | 6.0 AMP 282.0K |
 | 3.5 AMP 47.0K | 6.5 AMP 611.0K |
 | | 7.0 AMP OPEN |
 |____________________________|__________________________|

 | Gecko 201 Terminal Arrangement |
 |---|
 | Terminal# | Description |
 |-----------|---|
 | T1 | Supply Ground |
 | T2 | Supply Power (+) (+18VDC to +80VDC) |
 | T3 | Phase A |
 | T4 | Phase B |
 | T5 | Phase C |
 | T6 | Phase D |
 | T7 | Disable windings (when connected to ground T12) |
 | T8 | Direction (ground-going signal relative to +5V common) |
 | T9 | Step (ground-going signal relative to +5V common) |
 | T10 | +5V Common |
 | T11 | Current set resistor |
 | T12 | Current set resistor (ground) |
 |___________|___|

 Use heat sinks for current settings above 3 amps.
 Drive should be heatsinked to a piece of aluminum, preferably with
 fins and a fan to increase heat dissipation and surface area.

 GECKO OPTION JUMPERS

 1 2 3 4
 .------------. > Jumper pins 2 and 6 for STANDBY ENABLED
 | o o o o | > Jumper pins 1 and 5 for STANDBY DISABLED
 | o o o o | > Leave all pins open for LOW CURRENT RANGE
 `------------' > Jumper pins 3 and 7 for SIZE 42 MOTOR
 5 6 7 8 > Jumper pins 4 and 8 for MID-BAND DISABLED
 > Jumper pins 7 and 8 for NORMAL (DEFAULT)

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

200

 GECKO COMPUTER CONNECTIONS

 On the Kuper cards and A800 boards, connect STEPS to T9, DIRECTION to T8,
 and +5v from card (pin 20) to T10, e.g.

 Kuper RTMC/A800 Pin Gecko Drive Terminals
 ------------------- ---------------------
 1 (no connection)
 2 (A-Step) T9 for channel A
 3 (B-Step) T9 for channel B
 4 (C-Step) T9 for channel C
 : : :
 etc etc etc
 : : :
 20 (+5VDC) T10 on ALL GECKO DRIVES
 21 (A-Dir) T8 for channel A
 22 (B-Dir) T8 for channel B
 23 (C-Dir) T8 for channel C
 : : :
 etc etc etc
 : : :

 GECKO MOTOR CONNECTIONS

 In the following table, T3, T4, T5 and T6 refer to the numbered
 terminals on the drive. Colors indicate the wire colors that come
 off the motor. NOTE: These are derived from Centent docs, which
 /should/ be compatible. From what I could find, Gecko doesn't
 provide diagrams showing wire colors, but they seem to be
 terminal compatible with the Centent drives (which does).

 ********* GECKO 201 - SERIES WIRING - 6 WIRE *********

 Manufacturer T3 T4 T5 T6
 ----------------- ------- ------- ------- -------
 Superior Electric GRN/WHT GRN RED RED/WHT
 Rapidsyn GRN/WHT GRN RED RED/WHT
 IMC GRN/WHT GRN RED RED/WHT
 Sigma YEL RED BLK ORN
 Oriental Motor BLU RED BLK GRN
 Portescap YEL/WHT RED ORN/WHT BRN
 Bodine YEL RED BRN ORN
 Digital Motor YEL RED BLK ORN
 Warner RED YEL ORN BRN
 Japan Servo YEL GRN BLU RED

 ********* GECKO 201 - PARALLEL WIRING - 6 WIRE *********

 Manufacturer T3 T4 T5 T6
 ----------------- ------- ------- ------- -------
 Superior Electric WHT GRN RED BLK
 Rapidsyn WHT GRN RED BLK
 IMC WHT GRN RED BLK
 Sigma RED/YEL RED ORN/BLK ORN
 Oriental Motor BLU WHT YEL GRN
 Portescap RED/WHT RED ORN/WHT ORN
 Bodine RED/WHT RED ORN/WHT ORN
 Digital Motor RED/WHT RED BLK BLK/WHT
 Warner RED WHT ORN BLK
 Japan Servo WHT GRN BLU WHT

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

201

***************** 4-WIRE MOTOR *****************
***************** WIRING DIAGRAM *****************

The following diagram shows the motor wiring for a 4 wire stepper motor.

 (GECKO T3) (GECKO T4)
 WHT/BLK BLK
 o o
 | |
 ::::|:::::::::::::::::::::::|::::
 :: | .-----. | ::
 :: | | | | ::
 :: `vvvvvvvv' `vvvvvvvv' ::
 /| :: ::
 / | :: PHASE A ::_________
 / | :: :: | Motor
 /___| :: ::_________| Shaft
 | :: PHASE B ::
 | :: ::
 ----- :: .^^^^^^^^. .^^^^^^^^. ::
 WIRES :: | | | | ::
 :: | `-----' | ::
 ::::|:::::::::::::::::::::::|::::
 | |
 o o
 WHT/RED RED
 (GECKO T6) (GECKO T5)

***************** SUPERIOR ELECTRIC MOTOR *****************
***************** 6-WIRE - SERIES *****************
***************** WIRING DIAGRAM *****************

The following diagram shows the SERIES "low power" motor wiring for for a
Superior Electric 6 wire motor.

 (GECKO T3) n/c (GECKO T4)
 GRN/WHT WHT GRN
 o o o
 | | |
 ::::|:::::::::::|:::::::::::|::::
 :: | .--O--. | ::
 :: | | | | ::
 _ :: `vvvvvvvv' `vvvvvvvv' ::
 / \ :: ::
 | _ :: PHASE-A PHASE-B ::_________
 |/ \ :: ::_________| Shaft
 | | :: PHASE-D PHASE-C ::
 _/ :: ::
 ----- :: .^^^^^^^^. .^^^^^^^^. ::
 WIRES :: | | | | ::
 :: | `--O--' | ::
 ::::|:::::::::::|:::::::::::|::::
 | | |
 o o o
 RED/WHT BLK RED
 (GECKO T6) n/c (GECKO T5)

***************** SUPERIOR ELECTRIC MOTOR *****************
***************** 6-WIRE - PARALLEL *****************

PARALLEL "high power" wiring for a Superior Electric 6 wire motor.

 WHT
 .----------------------- GECKO T3
 n/c |
 GRN/WHT | ,----------- GECKO T4
 | | | GRN
 ::::|:::::::::::|:::::::::::|::::
 :: | .--O--. | ::
 :: | | | | ::
 _ :: `vvvvvvvv' `vvvvvvvv' ::
 / \ :: ::
 | _ :: PHASE-A PHASE-B ::_________
 |/ \ :: ::_________| Shaft
 | | :: PHASE-D PHASE-C ::
 _/ :: ::
 ----- :: .^^^^^^^^. .^^^^^^^^. ::
 WIRES :: | | | | ::
 :: | `--O--' | ::
 ::::|:::::::::::|:::::::::::|::::
 | | | RED
 RED/WHT | `----------- GECKO T5
 n/c |
 `----------------------- GECKO T6
 BLK

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

202

***************** SUPERIOR ELECTRIC MOTOR *****************
***************** 8 WIRE - SERIES *****************

SERIES "low power" wiring for a Superior Electric 8 wire motor.

 Tie WHT/YEL + WHT/RED together, isolate.

 .----------------------------------- GECKO T3
 | .---. .----------- GECKO T4
 | WHT | | WHT |
 YEL | YEL | | RED | RED
 o o o o
 _ :::::|:::::::::|:::|:::::::::|::::
 / \ :: | | | | ::
 | | :: `vvvvvvvvv' `vvvvvvvvv' ::
 _/ :: PHASE A PHASE B ::______
 / \ :: ::______| Shaft
 | | :: PHASE D PHASE C ::
 | | :: .^^^^^^^^^. .^^^^^^^^^. ::
 _/ :: | | | | ::
 ----- :::::|:::::::::|:::|:::::::::|::::
 WIRES o o o o
 ORN | WHT | | WHT | BLK
 | ORN | | BLK |
 | `---' `----------- GECKO T5
 `----------------------------------- GECKO T6

 Tie WHT/ORN + WHT/BLK together, isolate.

***************** SUPERIOR ELECTRIC MOTOR *****************
***************** 8 WIRE - PARALLEL *****************

PARALLEL "high power" wiring for a Superior Electric 8 wire motor.

 Tie YEL + WHT/RED together, connect to T3
 Tie RED + WHT/YEL together, connect to T4

 .-------------O===================== GECKO T3
 | |
 | .---|---------O=========== GECKO T4
 | | | |
 | WHT | | WHT |
 YEL | YEL | | RED | RED
 o o o o
 _ :::::|:::::::::|:::|:::::::::|::::
 / \ :: | | | | ::
 | | :: `vvvvvvvvv' `vvvvvvvvv' ::
 _/ :: PHASE A PHASE B ::______
 / \ :: ::______| Shaft
 | | :: PHASE D PHASE C ::
 | | :: .^^^^^^^^^. .^^^^^^^^^. ::
 _/ :: | | | | ::
 ----- :::::|:::::::::|:::|:::::::::|::::
 WIRES o o o o
 ORN | WHT | | WHT | BLK
 | ORN | | BLK |
 | | | |
 | `---|---------O=========== GECKO T5
 | |
 `-------------O===================== GECKO T6

 Tie ORN + WHT/BLK together, connect to T5
 Tie BLK + WHT/ORN together, connect to T6

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

203

gr(DOCS)

GR(DOCS) Optical Printer Control Systems GR(DOCS)

NAME
 gr - graph moves

SYNOPSIS
 gr file chans [sfrm efrm]

 file - the name of the position file
 chans - channels to show in graph. A channel can be any letter a thru l.
 Can be ranges like 'a-d', or comma delimited lists like
 'a,d,e' or combinations like 'a,d-j'.
 sfrm - starting frame of move
 efrm - ending frame of move

 If any of the options are not supplied, the user will be prompted.

EXAMPLE
 gr foo.pos e-f 1 50
 ------- ----- ----
 File Chans Frames

DESCRIPTION
 gr is an external .exe tool that runs in DOS, but can be run from within
 OPCS using either '! gr foo.pos e-f 1 50' or gr can be added as an OPCS
 command using DOSCMD(OPCSDEFS).

 gr will graph the columns of numbers in the specified positions file.

EDITING KEYS

 Left/Right Arrow - Select a different frame (also ^B/^F)
 Tab/Shift-Tab - Jump forward/reverse frames 10% of screen
 Up/Down Arrow - Adjust position +/- 1/20th screen (also ^P/^N)
 Ctrl-Up/Down - Micro-adjust positions +/- 1
 R - Redraw screen
 S - Enter new frame range
 ESC, Q - Quit
 A-L - Select channel A through L
 ^E - Toggles 'noclear' mode, leaves trail of edit positions
 ^M - Modift current position by typing in new value

 One can use the arrow keys to adjust positions on screen:

HARDWARE
 It is assumed your video card is capable of displaying rudimentary
 640x350 16 color graphics (EGA/VGA). All graphics cards should
 support this mode. BIOS mode 16, e.g. INT 10H, AH=0, AL=10H.

AUTHOR
 Greg Ercolano, Venice California 1998

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

204

home(DOCS)

HOME(DOCS) Optical Printer Control System HOME(DOCS)

NAME
 home - motor homing standalone program

OPTIONS
 -v # verbose mode for debugging changes
 -d # debug mode
 -h # help

USAGE
 home [name-of-procedure] ..

EXAMPLES
 home # home all axes defined in 'default' procedure
 home a b c # call procedures 'a', 'b' and 'c'

DESCRIPTION
 'home' is an external .EXE command that runs in DOS, but can be
 easily available within OPCS by adding 'doscmd home' to OPCSDEFS.OPC.

 'home' is part of the OPCS system, and is used to home the camera,
 projector, fader, and motion control axes. It can set bits, check
 for hardware conditions, etc.

 'home' has a simple command language that lets one run motors until
 the status bit of home sensors change, and there's also logical
 if() conditions that can be used to check hardware bits.

DEFINING HOMING PROCEDURES
 Homing procedures are defined this way:

 start foo
 {
 commands..
 }
 end foo

 ..where 'foo' can be any word or letter that is used to call
 the procedure, and can be invoked from the command line as:

 home foo

 In the case of setting up homing procedures for channels,
 the procedure names are the channel letter, e.g.:

 start a
 {
 print AERIAL HOME

 # ..code to handle homing the aerial projector..
 }
 end a

 ..so to home the 'a' channel, one just executes:

 home a

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

205

 The names used for 'start' and 'end' are whatever you want.
 By convention, channel letters are used for defining procedures
 for homing those channels. You can also define your own procedures
 for doing other things, like homing wedge wheels, and other such
 things that the OPCSDEFS.OPC file can't do.

 The HOMEDEFS.HOM file has two special procedures:

 start always
 {
 # commands that always execute, and are executed *first*;
 }
 end always

 start default
 {
 # Commands to execute if user just typed
 # 'home' without any command line arguments.
 }
 end default

 When you run 'home' without arguments, the 'default' procedure
 in the HOMEDEFS.HOM file is executed. So it's common to have
 that procedure home all the motors, e.g.

 start default
 {
 call a # home aerial (if there is one)
 call b # home main
 call c # home camera
 call d # home fader
 }
 end default

COMMANDS
 Home commands are put into the HOMEDEFS.HOM file, enclosed
 in procedures. Here's a list of all the home commands (K2.20/TC):

 baseaddr [port] # Kuper/A800 base address [0300 default]
 call [proc] # Call named procedure
 clrbit [port] [bitmask] # Clear port bit by OR/XORing [bitmask]
 cswait [centisecs] # Wait so many centiseconds
 end [label] # Declare the end of a procedure
 exit [code] # Exit with an error code
 fail? { commands } # Run { cmds } if gohome/gochange cmd failed
 go [chan] [dist] [spd] # Send a motor some distance
 gochange [chan] [maxdist] [spd] # Run until home sensor changes state
 gohome [chan] [maxdist] [spd] # Home a motor
 goto [label] # goto a label within proc (label-name:)
 homeport [chan] [port] [mask] [test] # Port to test for home condition
 ishome? [chan] { cmds } # Is a channel at its home position?
 istrip? [chan] { cmds } # Is a chan's trip switch is tripped?
 nothome? [chan] { cmds } # Is chan NOT at its home position?
 notrip? [chan] { cmds } # Is a chan's trip switch NOT tripped?
 outport [port] [bytevalue] # Write a byte to a port
 pass? { commands } # Run { cmds } if go/gohome/gochange passed
 portset? [port] [mask] { cmds } # Check if port bit set
 portclr? [port] [mask] { cmds } # Check if port bit clear
 ppr [chan] [value] # Pulses per revolution
 print [string] # Prints a message to the screen
 printport [port] # Print the value at a port in hex
 pse # Wait for a keypress from the user
 reset [chan] [value] # Reset counter for [chan] to [value]
sampspersec [val] # Vel samples per second:
 # RTMC=120.0, A800=107.0, A800(REVB)=120.0
 setbit [port] [bitmask] # Set port bit by ORing [bitmask]
 start [label] # Declare beginning of a procedure
 (NOTE: label name 'always' defines procedure ALWAYS parsed)
 system [command] # Execute a DOS command
 tripport [chan] [port] [mask] [test] # Port to test for trip condition
 xorbit [port] [bitmask] # Invert port bit by XORing [bitmask]

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

206

ENVIRONMENT VARIABLES

 OPCSDEBUG - if set to '1', 'home' will dump the velocity arrays
 to stdout after the motors have moved. The output
 can be redirected to a file for better inspection.

 The 16 bit velocity values printed are 16 bit words
 of the form:

 0 x 0 8 1 0 <-- hex
 - - - -
 ___________| | | |___________
 | ___| |___ |
 | | | |
 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 <-- binary
 | | | | | _______________________/
 | | | | | Speed (11 bits)
 | | | | |
 | | | | Direction bit
 | | | |
 | | | Full Rotation (counter)
 | | |
 | | Soft Reverse
 | |
 | Allstop check bit
 |
 Full Stop (last velocity in array)

 The lower 12 bits (dir + speed) are sent directly
 to the Kuper card. The upper 4 bits are interpreted
 by the 'mdrive' resident driver code.

EXAMPLE HOMEDEFS.HOM FILE

##
HOME PROGRAM'S DEFINITIONS FILE
This file contains commands particular only to the 'home' program.
'home' is a standalone program that can move the motors, and watch
for changes in the home sensors.
##

DEFINE PORTS FOR THE USER'S INSTALLATION

start always # THESE COMMANDS *ALWAYS* PARSED
{
 ### HOME SENSORS
 homeport a 0000 00 00 homeport e 0000 00 00 homeport i 0000 00 00
 homeport b 0000 00 00 homeport f 0000 00 00 homeport j 0000 00 00
 homeport c 0000 00 00 homeport g 0000 00 00 homeport k 0000 00 00
 homeport d 0000 00 00 homeport h 0000 00 00 homeport l 0000 00 00

 ### TRIP SWITCHES
 tripport a 0000 00 01 tripport e 0000 00 01 tripport i 0000 00 01
 tripport b 0000 00 01 tripport f 0000 00 01 tripport j 0000 00 01
 tripport c 0000 00 01 tripport g 0000 00 01 tripport k 0000 00 01
 tripport d 0000 00 01 tripport h 0000 00 01 tripport l 0000 00 01
}
end always

start a
{
 print
 print AERIAL: (DISABLED)
}
end a

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

207

start b
{
 print -n MAIN:
 ishome? b
 {
 print -n RUNOUT FROM HOME -
 go b -500 .4
 ishome? b
 {
 print
 print *** Cant run out of home position! (are motors off?)
 exit 1
 }
 cswait 20
 }
 print -n SEEKING HOME -
 gohome b 1000 .4
 fail?
 {
 print -n SEEK HOME IN REV DIR -
 cswait 50
 go b -1500 .4 # (arrive at home from same direction)
 cswait 50
 gohome b 2000 .4
 fail?
 {
 print
 print *** Cant find home position! (are motors off?)
 exit 1
 }
 }
 print DONE.
}
end b

start c
{
 print -n CAMERA:
 ishome? c
 {
 print -n RUNOUT FROM HOME -
 go c -500 .4
 ishome? c
 {
 print
 print *** Cant run out of home position! (are motors off?)
 exit 1
 }
 cswait 20
 }
 print -n SEEKING HOME -
 gohome c 1000 .4
 fail?
 {
 print -n SEEK HOME IN REV DIR -
 cswait 50
 go c -1500 .4 # (arrive at home from same direction)
 cswait 50
 gohome c 2000 .4
 fail?
 {
 print
 print *** Cant find home position! (are motors off?)
 exit 1
 }
 }
 print DONE.
}
end c

start d
{
 print -n FADER:
 ishome? d
 {
 print -n RUNOUT FROM HOME -

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

208

 go d 1500 .11
 ishome? d
 {
 print
 print *** Cant run out of home position! (are motors off?)
 exit 1
 }
 cswait 20
 }
 print -n SEEKING HOME -
 cswait 50
 gohome d -11450 .11
 fail?
 {
 print
 print *** Cant find home position! (are motors off?)
 exit 1
 }
 cswait 10
 go d -1950 .11
 print DONE.
}
end d

EXAMPLE OF INITIALIZING A LINEAR AXIS
Change the X to a channel letter.
#
start X
{
 print -n CAM ZOOM:
 ishome? X
 {
 print -n MOVE OFF,
 gochange X -100000 .25
 ishome? X
 {
 print
 print *** Cant find home! (are motors off?)
 exit 1
 }
 # GO A LITTLE FURTHER IN SAME DIRECTION
 go X -400 .25
 cswait 20
 }
 print -n MOVE TOWARD EDGE,
 gochange X 100000 .25
 print DONE.
}
end X

USED BY JOG(OPCS)
start deenergize
{
 print *** HOMEDEFS.HOM: No 'deenergize' target defined.
}
end deenergize

exit 0

ORIGIN
 Gregory Ercolano, Topanga, California 05/12/00

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

209

kuper(DOCS)

KUPER(DOCS) Optical Printer Control System KUPER(DOCS)

 NAME
 kuper - kuper card documentation

 KUPER CONTROL RTMC16 CARD CONNECTOR 'P2'
 (DB37S - 37 pin connector)

 1 - (*) 20 - +5VDC
 2 - STEP A 21 - DIR A DB37S (37 pin connector)
 3 - STEP B 22 - DIR B
 4 - STEP C 23 - DIR C
 5 - STEP D 24 - DIR D
 6 - STEP E 25 - DIR E
 7 - STEP F 26 - DIR F (*) = Jumper Select GND or +5 with JP5:
 8 - STEP G 27 - DIR G +5VDC - Short pins 1 & 2 on JP5
 9 - STEP H 28 - DIR H GND - Short pins 2 & 3 on JP
 10 - STEP I 29 - DIR I
 11 - STEP J 30 - DIR J
 12 - STEP K 31 - DIR K NOTE: All outputs are OPEN COLLECTOR
 13 - STEP L 32 - DIR L TTL. Maximum +5 current draw
 14 - STEP M 33 - DIR M should not exceed 400 milliamps.
 15 - STEP N 34 - DIR N
 16 - STEP O 35 - DIR O
 17 - STEP P 36 - DIR P
 18 - (*) 37 - +5VDC
 19 - (*)

 KUPER CONTROL CARD IRQ JUMPER SETTINGS (JP3)
 Selects the IRQ used for feeding velocities

 JP3 has a single jumper on one set of pins to set the IRQ;
 from left to right, pins set IRQ 2 thru 7, with 5 being the default:

 _
 JP3 | |
 o o o |o| o o
 o o o |o| o o
 | | | |_| | |
 | | | | | |
 | | | | | |__ IRQ7
 | | | | |_____ IRQ6
 | | | |________ IRQ5 <-- DEFAULT
 | | |___________ IRQ4
 | |______________ IRQ3
 |_________________ IRQ2

 KUPER CONTROL CARD SWITCH SETTINGS 'JP4'
 Selects the KuperBase address value
 (Jumpers A3-A9)

 This is the default configuration for 0300h:

 JP4
 _ _ _ _ _
 | || || || || |
 |o||o||o||o||o| o o
 |o||o||o||o||o| o o
 |_||_||_||_||_|

 A3 A4 A5 A6 A7 A8 A9

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

210

 Here's the table of the JP4 jumper variations from the
 RTMC16 manual, shown in "most likely to work" order:

 KuperBase
 Address A3 A4 A5 A6 A7 A8 A9

 0300 1 1 1 1 1 0 0
 0320 1 1 0 1 1 0 0
 0320 0 1 0 1 1 0 0
 0330 1 0 0 1 1 0 0
 0340 1 1 1 0 1 0 0
 0280 1 1 1 1 0 1 0
 02a0 1 1 0 1 0 1 0
 0308 0 1 1 1 1 0 0
 0310 1 0 1 1 1 0 0
 0318 0 0 1 1 1 0 0

 NOTE: 0 = off 1 = on

 Factory setting is 0300, and there is usually no need
 to modify this setting unless other boards in the machine
 are conflicting with this address. Same for the IRQ setting.

KUPER LOGIC CONNECTOR [R1]
Inputs are tied high to +5

 PIN NAME PORT MASK (hex)

 1 GND GND GND
 2 out 0 0x306 01
 3 out 1 0x306 02
 4 out 2 0x306 04
 5 out 3 0x306 08
 6 out 4 0x306 10
 7 out 5 0x306 20
 8 out 6 0x306 40
 9 out 7 0x306 80
 10-12 ??? ??? ??
 13 +5 +5 +5
 14 GND GND GND
 15 in 0 0x306 01
 16 in 1 0x306 02
 17 in 2 0x306 04
 18 in 3 0x306 08
 19 in 4 0x306 10
 20 in 5 0x306 20
 21 in 6 0x306 40
 22 in 7 0x306 80
 23-24 ??? ??? ??
 25 +5 +5 +5

KUPER "INDUSTRIAL" CARD

 The Kuper Controls "Industrial Card" is a 'half slot ISA' card,
 a variation on the RTMC-48. So for OPCS, install the "RTMC48.COM"
 driver.

 The "H1" 40 pin connector (upper-left) is the steps/direction.
 The "H2" 40 pin connector (upper-right) is the "logic" connector.
 For OPCS, only the "H1" connector should be used.

 On the H1 connector, pin #1 is at the lower-left of the connector
 (component side facing you).

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

211

 This card has 3 jumper blocks, whose "factory" settings are:

 JP1: o-o o -- sets voltage for pin #1 (OPCS: don’t care)

 JP2: o o o o o -- sets samples-per-second(?) (default: 120/sec)
 | | |
 o o o o o

 JP3: o o o o o o -- sets the IRQ (default IRQ 5)
 |
 o o o o o o

 ..where '-' is a horizontal jumper, and '|' is a vertical jumper.

KUPER PORT MONITOR PROGRAM
 The OPCS software comes with kuper.exe, a program that monitors
 the real time status of the Kuper logic port. Run 'kuper.exe'.
 This tool can be downloaded from http://seriss.com/opcs/ftp/

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

212

math(DOCS)

MATH(DOCS) The Optical Printer Control System MATH(DOCS)

 NAME
 math - math expressions in OPCS

 MATH EXPRESSIONS
 You can usually use math expressions in place of most numeric
 arguments as long as the expression is ENCLOSED IN PARENTHESES,
 and DOES NOT CONTAIN EMBEDDED SPACES. Example:

 (3+(3*sqrt(16)*12))

 Math can be done on frame counter values:

 (cam+3)

 For a complete list of all built in math operations, execute:

 (?)

 The following lists some of the operations supported by the
 math expression parser:

 /*** TYPICAL OPERATIONS ***/

 (3+4-2*12/6) # add, subtract, multiply, divide
 (533%256) # modulus
 (2^4) # exponentiation (powers)

 /*** OPCS VALUES ***/
 cam - camera counter value
 pro - main projector counter value
 pro1 - main projector counter value
 pro2 - aerial projector counter value

 /*** MATH FUNCTIONS ***/

 sqrt(), log(), exp(),
 sin(), cos(), tan(),
 asin(), acos(), atan(),
 atan2(), radians(), degrees()
 hex(), pi

 /*** NUMERIC EXPRESSIONS ***/
 -12 # negative 12
 +34 # positive 34
 0x3ff # hex representation for 1023 decimal

 THE ONLINE CALCULATOR
 To aid the operator, the above techniques can be used for printing
 the answer to expressions by typing them alone on a line surrounded
 by parentheses.

 Example:

 (3+(3*sqrt(16)*12))

 ..on a blank line (as if it were a command), the answer will be

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

213

 printed to the screen:

 147.000000

 Camera, and both Aerial and Main Projector frame counters can
 all be referenced in math expressions by their command names.

 For instance, to send the Aerial Projector (pro2) to the same
 frame as the Main Projector's (pro) current frame counter plus
 5 frames:

 pro2 >(pro+5)

 ..so if the Main Projector's frame counter is 1000, the
 Aerial Projector will move to frame 1005.

 Or to sync both projectors to camera's current frame counter:

 seek >(cam) >(cam) 0
 ------ ------ ------
 Aerial Main Camera

 ..so if the camera counter is 210, this will send both
 aerial and main projectors to frame 210 as well.

 BUGS
 Needs logicals some day, like 'not()', 'xor()', 'and()', etc.

 ORIGIN
 Gregory Ercolano, Los Feliz California 12/15/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

214

mov(DOCS)

MOV(CUSTOM) OPCS Custom Move Commands MOV(CUSTOM)

NAMES
 clmov - clear all moves
 mov - program moves using linear or ease curves
 grmov - graph programmed moves
 usemov - use moves created with recent mov commands
 stopmov - cancel a move in progress
 savemov - save a move to a file
 loadmov - load a move from a file

SYNOPSIS
 clmov
 mov <chans> <sfrm> <efrm> <spos> <epos> <ein> <eout>
 grmov <chans> <sfrm> <efrm>
 usemov <chans>
 stopmov
 showmov
 editmov
 savemov <filename>
 loadmov <filename>

EXAMPLE
 clmov # clear all moves in mov.pos
 mov e 1 50 0 10000 10 10 # create a 50 frame move on the e channel
 mov h 1 50 0 8000 0 0 # create a 50 frame linear move on h channel
 showmov # (OPTIONAL) shows moves created
 editmov # (OPTIONAL) opens move in MS-DOS editor (EDIT)
 grmov e 1 50 # (OPTIONAL) graph move on e channel, ESC quits
 usemov eh # start using moves in eh channels
 rep 100 # first 50x will shoot move

DESCRIPTION
 This series of commands helps camera operators construct and modify
 move files easily.

 The commands are really custom scripts build around the external
 EASE.EXE and GR.EXE tools, and around the FEED(OPCS) command,
 to make them easier to use. You can actually do everything these
 commands do with just EASE(DOCS), GR(DOCS), and FEED(OPCS).

 MOV

 MOV creates moves using linear or ease curves for the named channels
 given a frame range and a move range, and optional ease in/out values.

 mov ef 1 50 0 10000 10 10
 -- ---- ------- -----
 | | | |
 | | | Ease in/out #frames
 | | Position start/end
 | Frame start/end
 Channels to affect

 MOV is a script that invokes the ease.exe program to generate the
 actual moves, which can be saved to a file with SAVEMOV, and loaded
 with LOADMOV, shown with SHOWMOV, and graphed with GRMOV.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

215

 USEMOV

 USEMOV is similar in function to the FDI/FDO command, preparing the
 system to begin reading values from the channels in the current
 position file (mov.pos). Once USEMOV is invoked, any commands that shoot
 the camera first moves motors to the next positions in the move file.

 Once the entire move has been shot, the move file is automatically
 disabled. This can also be done prematurely with the STOPMOV command.

 USEMOVE is a script that uses FEED(OPCS) to do the actual work.

 REUSING MOVES

 Once created, moves can be used more than once:

 usemov ef rep 50
 seek >120 10 # run out to next element, 10x black
 usemov ef rep 50
 seek >220 10 # run out to next element, 10x black
 usemov ef rep 50
 ..

 SAVING MOVES

 Moves can also be saved for later use by copying the mov.pos file
 to another name:

 mov e 1 50 0 10000 10 10 # create 50x move 0 to 10k on e chan
 mov f 1 50 0 8000 0 0 # create 50x move 0 to 8k on f chan
 savemov pan-to.pos # save for later

 mov e 1 50 10000 0 10 10 # create reverse move back to zero
 mov f 1 50 8000 0 0 0
 savemov pan-from.pos # save for later

 [..days go by, other work done..]

 loadmov pan-to.pos # bring back 'pan to' move..
 usemov ef rep 50 # ..and shoot it

 loadmov pan-from.pos # bring back 'pan from' move
 usemov ef rep 50 # ..and shoot it

SEE ALSO
 FEED(OPCS) - feed new positions to motor every time camera shoots a frame
 EASE(DOCS) - create ease in / out positions
 GR(DOCS) - graph moves to screen

AUTHOR
 Greg Ercolano, Venice California 1998

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

216

opcs(DOCS)

OPCS(OPCS) Optical Printer Control System OPCS(OPCS)

 NAME
 opcs - optical printer control system

 USAGE
 opcs [startup-file]

 INTRO
 The OPCS software is command oriented, executing commands like
 a unix shell. The upper half of the screen is for film counters
 and positions, the lower half for user entered commands.

 There's at least two screen styles; 'bigcounters' which takes up
 half the screen, and 'small counters' which takes up much less,
 the latter leaving more room for the user's command history.

 The heart of the software is the stepper motor driver routine
 which can control 4 axes per up to 3 parallel ports on the back
 of the computer.

 STARTUP
 By default 'opcs' loads the OPCSDEFS.OPC file that is in the
 current directory. If the optional [startup-file] is specified,
 that file is loaded as the OPCSDEFS.OPC file instead.

 The OPCSDEFS.OPC file contains special 'OPCSDEFS' commands that
 set up the software, setting things like motor speeds, ports
 for sensing buckle/viewer, defining motor hardware settings,
 custom commands, etc.

 To list all the OPCSDEFS.OPC commands, run 'man -k OPCSDEFS:'
 and then you can focus on each one of the commands by running
 'man' followed by the name of the command (e.g. 'man ramp')

 COMMAND LINE EDITING KEYS
 In OPCSK200 (released August 2020), new command line editing
 features were added, to make it easier for operators to run
 and edit commands, and access a command line history to retype
 previously entered commands.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

217

 Edit keys are similar to modern command shells:

 Up Arrow -- previous line in command history (^P)
 Dn Arrow -- next line in command history (^N)
 Lt Arrow -- move reverse one char on current line (^B)
 Rt Arrow -- move forward one char on current line (^F)
 Backspace -- backspace and delete (^H)
 Delete -- delete character (^D)
 Home -- move to start of current line (^A)
 End -- move to end of current line (^E)
 Ctrl-Home -- jump to top of command history
 Ctrl-End -- jump to bottom of command history (current line)
 Ctrl-Left -- word left
 Ctrl-Right -- word right
 ^K -- clear to end of line
 ^U -- clear current line (hit again to 'undo')
 ^V -- enter next character literally
 ESC -- clear current line (hit again to 'undo')
 F3 -- re-type last command
 F4 -- re-run last command (F3 + Enter)

 OLD MS-DOS STYLE EDITING KEYS
 In the older OPCS releases (K100), only the MS-DOS editing keys
 were available, and were kinda funky to use, e.g.

 F1 -- Repeats the letters of the last command line, one by one
 Rt Arrow -- Same as F1
 Ins -- Enables you to insert characters into the line
 Del -- Deletes a character from the line
 F2 -- Copies all characters from the last command buffer
 up to, but not including, the next character you type
 F3 -- Copies all remaining characters from the preceding command line
 F4 -- Usually re-programmed in AUTOEXEC.BAT to re-run last command
 F5 -- Moves current line to buffer but doesn't execute it

 ONLINE DOCUMENTATION
 Use man -k opcs to get a list of all OPCS related documentation,
 or man -k opcs: for just the OPCS commands themselves.

 The same goes for `man -k opcsdefs:` which will list just OPCSDEFS
 commands that are available.

 From the print out of these commands, you can determine which commands
 to pull up a full man page on. Just type 'man' followed by the name of
 the command you want to know more about:

 man cam # find out more about the CAM(OPCS) command

 Using this technique, you can guide yourself through all the OPCS
 commands, and how they interact.

 All the OPCS documentation pages follow a similar format. EXAMPLE:

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

218

 ..
 : :
 : CAM(OPCS) Optical Printer Control System CAM(OPCS) :
 : | | | :
 : | | The name of the software package :
 : | | :
 : | The section :
 : | :
 : The command or subject being documented. :
 : :
 : The above shows an example of a documentation page's header. :
 : Often there are commands with the same name in different sections. :
 : For example "SPD", which is both an operator command: SPD(OPCS), :
 : and an opcsdefs.opc setup file command: SPD(OPCSDEFS). :
 : Both manual pages will be displayed when you invoke man spd. :
 : :
 : NAME - This usually repeats the name of the command followed :
 : by a one line description of the command. :
 : :
 : USAGE - This usually shows a syntactical representation of how :
 : to use the command. :
 : :
 : EXAMPLES - Often literal examples are shown for commands that :
 : may have a complex syntax. Throughout the MAN pages, literal examples :
 : are usually in bold or underlined type. :
 : :
 : DESCRIPTION - Usually a few paragraphs, often accompanied by :
 : examples describe the command and its functions. :
 : :
 : FILES - Any files relevant to the command documented. :
 : :
 : SEE ALSO - List of related commands, e.g. COMMAND(SECTION). :
 : :
 : BUGS - If there are known bugs or 'gotchyas' with a command, :
 : they are listed here. These entries can be very helpful to avoid :
 : problems you may run into later. :
 :...:

 Documentation pages are viewed with the MAN command, and texts may
 be customized by the end users if they wish.

 TIPS
 For additional help on how to formulate commands, and shortcuts for
 typing commands, refer to SYNTAX(DOCS) (i.e. 'man syntax'), which
 describes the online calculator, command stacking, and other shortcuts.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

219

 ERRORS
 Most errors are self explanatory, but some need extra explanation,
 covered below:

 FADER NOT AT ### DEGREES FOR FDI/FDO/DXI/DXO
 When trying to do a fade/dx in, the shutter must first be
 completely closed, and when trying to do a fade/dx out, the shutter
 must be completely open.

 FILM BUCKLE or VIEWER OPEN
 HIT ENTER to CONTINUE or ALLSTOP to ABORT:
 While trying to run the camera, the film buckle switch has been
 tripped or the viewer is open.

 RECURSION ERROR
 The RUN command prevents you from running a script that is
 already running, to prevent infinite recursion.

 A run script calling itself, or a child script that calls a
 parent is considered 'recursion'. Here a script calls itself:

 # fred.run
 cam 1 pro 1
 run fred.run <-- FAILS HERE

 In this example, a child script calls one of its parents:

 # test1.run
 fdi 10 rep 10
 run test2.run

 # test2.run
 fdo 10 rep 10
 run test1.run <-- FAILS HERE
 The way to get the desired result
 is to remove this line, and start
 the scripts by executing e.g.:
 DO 12 RUN TEST1.RUN

 NESTED TOO DEEP
 Too many run script levels. When a script calls another script,
 that is '2 levels' of nesting. Up to 10 levels of nesting are
 allowed before this error occurs.

 STOPPED AT LINE (#) OF (#)>(filename)
 An error occurred in a run script, and this message indicates the
 line number, nesting level, and the name of the script where the
 initial error occurred. One message per nesting level is printed,
 with the FIRST MESSAGE being the script containing the error.

 INVALID REPEAT COUNT
 In a DO command, the value specified was negative, or not a number.

 SPEED OUT OF RANGE OR INVALID
 In a SPD command, the number specified was too low (0 or below)
 or too high. Normally, the software cannot run the motors slower
 than a 10 second exposure speed, but depends on the motor ramping
 and acceleration values. Have you recently changed them?

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

220

 UNKNOWN OPCSDEFS COMMAND
 A command in an OPCSDEFS file was invalid.

 INVALID FEET/FRAMES
 A specified feet/frames value was invalid. Usually, the frames
 value exceeded the number of frames in a foot.

 MISSING ARGUMENT AFTER 'command'
 The software expected an argument where one wasn't supplied.

 SYNC FAULT
 The software was not able to keep up with the hardware.
 Get a faster computer, seriously.

 This is a fatal error where the motors probably stalled because
 the software couldn't feed velocities fast enough to the motors,
 i.e., if the cpu is too slow. Or some other hardware/driver is
 using up the cpu by generating interrupts.

 This error can also occur when debugging is enabled; debugging
 messages can sometimes slow the software down enough to where
 it can't update the motors quickly enough.

 SPD: SPEED TOO SMALL (IGNORED)
 The resulting speed set by the SPD(OPCS) command would have been
 a value too small.

 FILES
 \OPCS\BIN\OPCS.EXE - the executable program
 \OPCS\BIN\MAN.EXE - online documentation program
 \OPCS\MAN* - online documentation pages
 OPCSDEFS.OPC - the 'start up' definition file
 *.OPC - other opcs definition files
 *.RUN - RUN(OPCS) scripts
 *.LOG - LOG(OPCS) files
 *.VRP - 'VELREP(OPCS)' files

 ENVIRONMENT VARIABLES
 OPCSDEFS=<hex> - pointer in memory to OpcsDefs structure
 OPCSLOOP=# - DO loop iteration (0 if none)
 OPCS_NOMOTOR_FRAME_DELAY=#
 - Delay for simulated frames when ‘motors off’

 SEE ALSO
 QUICKREF - OPCS camera operator quick reference/tutorial
 SYNTAX - Online calculator and OPCS math expression syntax
 OPCSSETUP - OPCS setup/installation procedures
 OPCSHARDWARE - OPCS hardware specifics (wiring, etc)
 VERSIONS - OPCS version information (a list of all revs)
 man -k OPCS: - list all OPCS operator commands
 man -k OPCSDEFS: - list all OPCSDEFS file commands

 ORIGIN
 Gregory Ercolano, Los Feliz California 01/18/91

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

221

opcsdefs(DOCS)

OPCSDEFS(DOCS) Optical Printer Control System OPCSDEFS(DOCS)

 NAME
 opcsdefs - OPCS definition file format description

 DESCRIPTION
 When the opcs program is started, the 'OPCSDEFS.OPC' is loaded.

 This file contains commands that sets the motor and ramp speeds,
 channel names, custom commands, interpolation curves, etc.

 After startup, the LDEFS(OPCS) command can be used to load
 different files containing other OPCSDEFS commands, allowing
 users to switch to different configurations, such as switching
 from IMAX to 35MM shooting, or changing around a filter wheel
 configuration, loading different follow focus files, fader
 curves, etc.

 The commands in OPCSDEFS files are different from the OPCS(OPCS)
 commands, and even when names are similar between them (e.g. 'reset'),
 their usage and context may be quite different, such as the
 case with SPD(OPCS) vs. SPD(OPCSDEFS).

 FILE FORMAT
 Custom files with OPCSDEFS commands should use the extension ".def",
 so as to be different from files with OPCS commands which use ".run".

 Lines starting with '#' and blank lines are ignored.
 Comments can also appear after commands, e.g.

 ramp a 10 150 15 200 # 'A' channel ramps

 Leading/trailing white space in generally ignored, so you can indent
 commands for formatting.

 Multiple commands can be stacked on a line if it serves readability, e.g.

 # BUCKLE SENSING PORTS
 buckle a 0000 00 00 buckle e 0000 00 00 buckle i 0000 00 00
 buckle b 0000 00 00 buckle f 0000 00 00 buckle j 0000 00 00
 buckle c 0000 00 00 buckle g 0000 00 00 buckle k 0000 00 00
 buckle d 0000 00 00 buckle h 0000 00 00 buckle l 0000 00 00

 ..but /generally/ there should be only one command per line.

 Commands that start with "!" will be execute as DOS commands.

 OPCS commands can be run from within an OPCSDEFS file using
 OPCSCMD(OPCSDEFS), e.g.

 opcscmd cam 12 # run the camera 12 frames
 opcscmd go d -1000 # move the fader -1000 pulses

 OPCSDEFS files can load other OPCSDEFS files with e.g.

 opcscmd ldefs otherfile.defs

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

222

 DOCUMENTATION
 Use man -k OPCSDEFS: for a full list of the OPCSDEFS commands.
 With this list, you should be able to zero in on specific commands
 using man [command].

 TRICKS WITH DEFS FILES
 People familiar with the IBM's operating system will be familiar with
 these capabilities...

 First, note that in K2.00 (and up), 'ldefs -c' can be used to run
 OPCSDEFS commands inside OPCS, e.g.:

 ldefs -c bigcounters on # big counters

 Which makes many of the below techniques unnecessary extra work.
 However, in the older releases (K1.xx) these are unavailable,
 so the below techniques must be used.

 As with all DEFS file commands, you can execute motor definition
 commands from within the OPCS software by creating a small file,
 and the loading commands from it via LDEFS(OPCS)... In the following
 example, we switch back and forth between large and small counters:

 ! echo bigcounters on > tmpfile ! ldefs tmpfile # big counters
 ! echo bigcounters off > tmpfile ! ldefs tmpfile # small counters

 This 'trick' can be used with any OPCSDEFS commands, and uses the
 operating system's ECHO command and 'reroute output' symbol (>) to
 create the file FOO, which is then loaded as a file with the LDEFS
 command. This technique CAN be used within a script or when entering
 commands manually.

 You can create multiline files from within a script as shown in this
 example using MSDOS's > and >> (append) symbols:

 ! echo flog 2.0 > tmpfile
 ! echo logcounters yes >> tmpfile
 ldefs tmpfile

 This technique can be programmed into run scripts, so defs file
 information can be changed on the fly.

 Here is another way to enter DEFS commands directly to the LDEFS
 command from within the OPCS software:

 ldefs con # Load the special MSDOS file CON...
 logcounters no # which is really the keyboard (console)
 ppr a 400 # reading these commands from keyboard
 ^Z # CTRL-Z and RETURN ends this mode..
 cam 12 # ..back to OPCS commands

 The 'ldefs con' technique works well for interactive typing, but
 cannot be programmed into a script, since it always reads from
 the keyboard. Use the 'echo' technique listed in the previous example
 for programming DEFS commands into a running script.

 These techniques are actually standard ways of using the DOS operating
 system, and are not particular to just the OPCS software. They can be
 used by any program running under MSDOS that properly supports the
 operating system.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

223

 Users not familiar with these techniques should learn them only if they
 think they might need them. At very least, operators should be aware
 of these capabilities.

 FILES
 \USR\BIN\OPCS.EXE - the OPCS system software executable
 OPCSDEFS.OPC - the 'start up' definition file
 *.DEF - other opcs definition files
 *.RUN - run scripts
 \USR\CATMAN\OPCS* - online documentation pages

 SEE ALSO
 OPCS(DOCS) - the opcs system in general overview
 OPCSHARDWARE(DOCS) - hardware specifics (wiring, etc)
 OPCSIFACE(DOCS) - OPCS interface boards (A800, PIO-100, SD-800..)

 ORIGIN
 Gregory Ercolano, Los Feliz California 11/29/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

224

opcsetup(DOCS)

OPCSETUP(DOCS) Optical Printer Control System OPCSETUP(DOCS)

 NAME
 opcsetup - opcs setup notes

 VERSION OPCSK2.00

 GENERAL
 This text describes how to set up the OPCS software from scratch,
 especially for a NEW installation. To greatly simplify this text,
 it is assumed you know certain DOS techniques and terminology that
 is available from your DOS manual, such as copying files to and from
 floppies, what subdirectories are, how to create them, execution
 PATHs, etc.

 It is assumed you have:

 o A KUPER or A800 stepper control card plugged in
 o An IBM PC with ISA or EISA slots
 o 512K or more of system memory.
 o Running MS-DOS 6.xx or Win95 or Win98 to boot in DOS mode
 o A hard disk (needed for the online manual pages)
 o AUTOEXEC.BAT and CONFIG.SYS (see below)

 CONFIG.SYS

 Your CONFIG.SYS should at minimum have these (or similar) settings:

 DEVICE=C:\WINDOWS\HIMEM.SYS
 DEVICE=C:\WINDOWS\COMMAND\ANSI.SYS
 DEVICE=C:\OPCS\BIN\OPCSBOLD.SYS
 FILES=10
 BUFFERS=20

 > HIMEM.SYS pushes DOS into high memory (>640k) allowing apps like
 OPCS to have more ram to run in the lower 640K. Use this if your
 machine has extended memory installed (most computers do).

 > ANSI.SYS provides text colors/highlighting which OPCS uses

 > OPCSBOLD.SYS (OPCSK200 and up) provides the special character set
 needed for 'bigcounters nixie' in OPCS version K2.xx and up.
 (Leave this line out if your OPCS version is K1.xx)

 > The FILES and BUFFERS lines help speed up disk access by allowing
 ram caching to be used. Optional but generally recommended.

 Note HIMEM.SYS and ANSI.SYS come with the operating system,
 so they should be present already. OPCSBOLD.SYS comes with the
 newer OPCS versions (K2.xx and up), so only include that line if
 your OPCS version has that file.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

225

 AUTOEXEC.BAT

 Your C:\AUTOEXEC.BAT should add the OPCS 'BIN' directory to the PATH,
 and start the correct driver for the stepper card you're using. For
 instance, if you have the OPCS K2.XX version and an A800 card:

 SET PATH=\OPCS\BIN;%PATH% -- add the opcs 'bin' to the PATH
 SET MANPATH=\OPCS\MAN\MAP -- sets up the OPCS 'man' pages
 A800DRV -- start the A800 driver with default settings
 CD \OPCS\WORKA800 -- leave DOS in the A800's WORK directory

 These are the different drivers OPCS supports for stepper motor
 cards; use these in place of the A800DRV command above:

 A800DRV.COM - for the OPCS a800 card
 RTMC48.COM - for the Kuper RTMC48 or Kuper Industrial card
 MDRIVE.COM - for the Kuper RTMC16 card

 If started with no command line flags, the drivers assume the cards
 are using the default jumper settings (usually baseaddr=300, IRQ=5).

 OPCS K2.10 (and higher)

 In K2.10 and up, the A800DRV, RTMC48, and MDRIVE motor drivers
 support options to set the IRQ and/or BaseAddr to something other
 than the defaults. Run the driver with the -help flag to view the
 options:

 a800drv -help
 rtmc48 -help
 mdrive -help

 NOTE: If your driver doesn't show a help screen, that driver
 ONLY supports the default jumper settings.

 So if your A800 card has the BaseAddr jumpers set to 340
 (instead of default 300) then you must specify the -b flag, e.g.

 a800drv -b340

 |
 Sets BaseAddr to 340

 Similarly if you have the IRQ jumper on the A800 set to IRQ6
 (instead of default IRQ5) then you must specify the -i flag, e.g.

 a800drv -i6

 |
 Sets the IRQ to 6

 On OPCS K2.10 and up, the RTMC48 and MDRIVE drivers have similar
 option flags.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

226

 C:\MSDOS.SYS

 On Windows 95/98 machines, you should disable Windows from starting so
 the machine boots directly to DOS. To do this, run these commands:

 1) ATTRIB -R -H -S C:\MSDOS.SYS
 ..which un-hides the file so you can edit it.

 2) EDIT C:\MSDOS.SYS

 3) Under [OPTIONS], adjust so you have these settings:
 BootGUI=0
 Logo=0
 BootDelay=0
 Where:
 BootGUI=0 -- disables Windows from starting automatically
 Logo=0 -- disables the Windows splash screen
 BootDelay=0 -- prevents any delay during booting:

 4) Save changes

 5) ATTRIB +R +H +S C:\MSDOS.SYS
 ..which re-hides the system file so it is used on boot.

 VERIFICATION
 To verify that the software is installed properly, reboot the
 system (so changes to the AUTOEXEC.BAT and CONFIG.SYS file take
 effect), and watch for any errors, and fix them.

 Then run OPCS. The software should start, printing the copyright
 banner, and indicating the OPCSDEFS file loaded properly. Look
 for error messages and fix them.

 When properly operating, the large counters should show up on
 the screen, and you should get a triangular arrow prompt.

 At any time, you can type 'q' or 'qq' to quit the software to
 return to DOS.

 If you see any error messages, the software either cannot access
 the OPCSDEFS.OPC file which should be in your current directory,
 or there are errors in the file. Use the text editor to fix
 or otherwise customize the OPCSDEFS.OPC file.

 Execute 'man cam' from within the software to verify that the
 online manual has been installed properly.

 If so, documentation on the 'CAM' command should come up with
 a MORE prompt at the bottom of each page. Hit 'SPACEBAR' to
 advance a page, 'B' to go back a page, or 'Q' to quit.
 Hitting RETURN will advance single lines. In newer versions,
 Up and Down arrow and/or 'J' and 'K' will move up/down one line.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

227

../../C:/MSDOS.SYS

 If you see any errors while trying to run the MAN command:

 'Bad command or filename'
 Either the 'MAN.EXE' command or 'MORE.EXE' is not in the machine's
 execution path. Make sure these files are in your executable
 \BIN directory, and the directory is properly specified in
 DOS's execution PATH. Use the DOS 'set' command to check.

 'man: could not open map'
 The MANPATH environment variable is not set or points to a

 directory that doesn’t exist or doesn’t contain a MAP file.

 NOTHING HAPPENS
 MAN may be using DOS's inferior MORE program to view the manual
 pages. Type ^C or ^BREAK to break out of DOS's MORE program,
 and make sure the \BIN directory is in the execution path before
 the DOS directory is. Example:

 If your execution path is setup in your AUTOEXEC.BAT file to
 check the DOS directory before checking the BIN directory,
 such as:

 PATH=C:\DOS;C:\OPCS\BIN

 Then change the order so the opcs BIN directory is first, e.g.

 PATH=C:\OPCS\BIN;C:\DOS

 TUNING THE SOFTWARE FOR NEW HARDWARE
 It is probable that the software should now immediately be able to
 make motors spin round and round, assuming the hardware is connected
 correctly. Maybe not smoothly, or making complete revolutions, but
 that comes next.

 You must now spend some time jumping in and out of the software,
 tuning your OPCSDEFS.OPC file to suit your hardware. Keep in mind
 that each time you make a change to the OPCSDEFS.OPC file, you
 must either rerun the OPCS software, or execute 'ldefs opcsdefs.opc'
 to force the software to recognize the changes.

 The following checklist should help you correct most problems:

 o If your motors stall when trying to run them at speeds that
 they SHOULD turn at, you may want to tune the RAMP(OPCSDEFS)
 and SPD(OPCSDEFS) values in your OPCSDEFS.OPC file

 If you think the motors may just be running too fast, modify
 the SPD(OPCSDEFS) commands in your OPCSDEFS.OPC file to run
 the motor slower. See man pages on this command for details.

 o If frame-oriented motors are not making complete revolutions,
 alter the PPR(OPCSDEFS) command to change the number of pulses
 in a revolution for your motor. Most shutters need 2000 pulses
 to revolve one full turn when using micro stepper drives. For
 those of you with VISTAVISION shutters, 4000 might be more
 suitable.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

228

 o If a motor runs reverse when told to run forward, and vice
 versa, change the DIRXOR(OPCSDEFS) value for that motor. (see
 man pages on DIRXOR). This command allows you to invert the
 direction of a motor without modifying the hardware.

 o If your fader does not fully open, fully close, or does not do
 linear dissolves properly, see the INTERP(OPCSDEFS) documentation
 for setting interpolation positions for every 10 degrees on the
 fader.

 o If you don’t like the initial speed the software comes up with
 for the camera or the default running speed for the projector,
 see the SPD(OPCSDEFS) documentation (which will come after the
 SPD(OPCS) docs).

 o If the fader appears to suffer from hardware slop (ie. the
 sequence 'cls shu 150' and 'opn shu 150' do not send the
 physical shutter to the exact same position, even though the
 motor does not appear to stall) this is due to mechanical
 hysteresis in the shutter mechanism, and can usually be
 alleviated ENTIRELY by use of the SLOP(OPCSDEFS) command, even
 in systems where slop of 5 to 10 degree deviations (typical of
 most old printers) is found. SLOP is a cool command, and can make
 really sloppy hardware work very accurately.

 Once you have tuned the system, and wish to start learning the
 commands, type ? in the software to get a list of all available
 commands, and read the online MAN pages for each command that
 interests you.

 SEE ALSO
 OPCSDEFS(DOCS) - OPCS configuration file
 OPCSHARD(DOCS) - hardware specifics (wiring, etc)
 OPCSIFAC(DOCS) - OPCS interface boards (A800, PIO-100, SD-800..)

 ORIGIN
 Gregory Ercolano, Los Feliz California 11/29/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

229

opcshard(DOCS)

OPCSHARD(DOCS) Optical Printer Control System OPCSHARD(DOCS)

NAME
 opcshard - notes on rigging the OPCS hardware

OPCSK100 and OPCSK200 Software

 The OPCS system uses either the A800 or one of the Kuper Controls
 cards (RTMC16, RTMC48, Kuper Industrial) to generate pulse streams
 to run the steps/direction inputs on the microstepper motor drives.

 PULSE GENERATOR ISA CARDS

 RTMC16 -- Kuper 16 axis 'full size' card using discrete
 RTMC48 -- Kuper 48 axis 'full size' card using FPGAs
 Kuper Industrial -- Kuper 16 axis 'half size' card using FPGAs
 A800 -- OPCS 8 axis 'half size' card using PICs

 A variety of stepper motor drives can be used with the above cards:

 STEPPER MOTOR DRIVES

 Centent (CNO-142, CNO-143, CNO-162, CNO-165)
 Gecko (201 and 201X)
 Leadshine (DM-542)
 Sanyo (FMD2740C)

 Although not required, the following OPCS interface boards can be
 used to simplify wiring to the motors and digital sensors:

 ANCILLARY CARDS

 PIO-100 - Parallel I/O interface board (see 'man pio-100')
 SD-800 - Stepper Distribution board (see 'man sd-800')

 The PIO-100 board is connected to the computer's parallel port,
 and breaks the signals out to individual RJ-45 ports, allowing
 RJ-45 patch cables to run out to each digital sensor, e.g.
 home sensors, buckle/viewer switches, deenergize on the step drives,
 tension motor controls, etc. This simplifies wiring, and allows
 sensors to be easily reassigned.

 The SD-800 board is connected to the computer's step pulse generator
 (e.g. RTMC16, RTMC48, Kuper Industrial, OPCS 'A800' board..), and
 fans out the step/direction signals for each channel to individual
 RJ-45 ports, allowing RJ-45 patch cables to run out to each channel's
 stepper drive. This simplifies wiring, and allows motor channels to
 be easily reassigned.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

230

OPCS SOFTWARE REQUIREMENTS/LIMITATIONS

 In order to run the optical printer effectively, the first 4 channels
 (a,b,c,d) are pre-assigned in the software for specific purposes:

 KUPER OPCS
 CHANNEL CHANNEL DEVICE EXPECTED TO DRIVE
 ------- ------- -------------------------------
 0 A Aerial Projector
 1 B Main Projector
 2 C Camera
 3 D Fader

 Other channels (E, F, etc) have no requirements, and can be assigned
 to any purposes, such as zoom, focus, east/west and north/south pan,
 filter wheels, capping shutters, etc.

 The OPCS software was originally designed to control a maximum of 12
 motors. Even though the Kuper card can control up to 16 axes, the OPCS
 software can only drive a maximum of 12.

 OPCSk1.00 does NOT use the Kuper card's encoder feedback. Under normal
 use, motors should never stall or lose position unless there is some
 hardware problem (e.g. stuck gears, bad connections, frozen equipment,
 bad pulley and/or gearing ratios), or the ramping values were not set
 properly (see RAMP(OPCSDEFS), SPD(OPCSDEFS), etc).

 The software provides for inverting the direction of a motor if it runs
 in the wrong direction. See DIRXOR(OPCSDEFS) to correct this. Normally,
 if the DIRXOR bit for a motor is 0, the motor will turn clockwise when
 told to run 'forward' from the software. By changing the DIRXOR bit to
 a 1, telling the motor to run 'forward' will make it run counter-clockwise.

 The OPCS software's definition file (OPCSDEFS.OPC file) can program
 any of the IBM's hardware ports to control/monitor the following
 functions. Usually the parallel port is used for this, though 3rd
 party digital I/O boards (such as the 8255 based I/O boards) can be
 used as well:

 Function DEFS command
 ------------------ ---------------------
 Film buckle buckle
 Viewer Open viewer
 Deenergize (unlock motors) deenergize
 Allstop allstop
 Motor Direction Inversion dirxor
 Home Sense (see HOME SENSING below)
 Set a bit on a port setbit
 Clear a bit on a port clrbit
 Invert a bit on a port xorbit
 Tension motors tension

 The software currently requires at LEAST a 25Mhz machine, or faster
 to properly update the motors. The software will display the error:

 FATAL ERROR: Sync Fault (probably lost positions)

 ...accompanied by some disagnostics data if it finds the CPU cannot
 keep up with the motors.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

231

 The software relies on the Kuper card's timebase to compute accurate
 camera exposures. Therefore, the software will have exposures
 consistent from machine to machine, regardless of the CPU's speed.

HOME SENSORS

 "Home sensors" or "optical sensors" allow the software to find
 each channel's "zero position" automatically from software.

 > Camera shutter needs to home in the "closed" position
 > Projector shutters needs to home in the "seated" position
 > Fader should be homed in the CLOSE position
 > Pan and zoom should home in the 1:1 center position
 > Filter wheels should be home in the full open (no filter) position
 > Capping shutters should home in the open position

 Home sensing is handled by the external 'home' program. It has its
 own setup file, HOMEDEFS.HOM that defines which computer port bits
 are associated with which home sensor, and which home sensor with which
 motor channel. This file also defines the motor homing routines;
 a simple 'scripting langauge' the defines how each motor channel should
 find home.

 Typically when OPCS first starts up, all motors are homed automatically
 via commands near the bottom of the OPCSDEFS.OPC file that sends each
 channel home, and zeroes the software counters. e.g.

 ! home a b c d # home the a/b/c/d channels
 reset abcd 0 # reset the software counters to zero

 See 'man home' and the HOMEDEFS.HOM file for examples of how the
 home program can be customized.

 Users can define their own OPCS commands to home the motors, using
 either RUNCMD(OPCSDEFS) or DOSCMD(OPCSDEFS) to run external programs
 such as the 'home' program.

 Home sensors usually manage either rotational or linear motion
 oriented channels:

 > Rotational sensors usually sense a slot in a disk to find home

 > Linear sensors usually sense the edge of a bar of metal running
 half the length of linear motion to find home. See "PAN CHANNELS"
 (below) for more info.

AERIAL & MAIN PROJECTOR

 The projector(s) usually have an M0-63 type motor to run the film
 movements, and Bodine tension motors to keep feed and takeup tension
 on the film. Home sensors on the movement ensure when the software
 starts up, the film movement is in the proper, fully seated position.

 There's usually one pair of tension motors for the regular film path,
 and a separate pair of tension motors for a secondary film path,
 such as when bipacking in the projector.

 The home position for projectors should be in the fully seated
 position, so that looking through the camera viewer will see a fully

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

232

 seated projector image.

 Typically motors are geared 1:1 to the film movements, which is to say
 one turn of the motor moves the film movement one full cycle, which is
 usually a full frame advance (for 35mm film), or sometimes a fraction
 of a frame for the larger format film (e.g. IMAX, Vistavision).

 For larger format films that involve several pulldown cycles of the
 film movement to expose a single frame, a capping shutter is utilized
 to expose only on one of the cycles that is the film exposure, and
 caps out the intermediate pulldown motions involved in advancing to
 the next frame in fractional steps.

 Usually it's best to run the projectors at their maximum safe speed,
 which is usually around 20 feet per minute, which is usually around
 0.25 to 0.18 exposure speed (around 5 frames per second).

CAMERA

 The camera film movememnt ususally uses an M0-63 type motor to run
 the film movements, and Bodine tension motors to keep feed and takeup
 tension on the film, a separate pair of tension motors for raw stock
 and optional bipack.

 The home position for the camera should be in the fully CLOSED
 position, so that the camera is NOT exposing film when sitting idle.

FADER

 The fader on optical printers is often difficult to configure
 for stepper motor control, especially cameras that need linear
 movement to rotate the shutter blade.

 Also many faders have a built in logarithmic movement that has
 to be counteracted for proper computer controlled dissolves.
 It's therefore often the case an interpolation curve is needed
 to undo the logarithmic motion. This can be done with the
 INTERP(OPCSDEFS) command. (See 'man interp' for more info)

 Faders are typically 170 degrees, which is the number of
 degrees the fader shutter's opening is. This is 10 degrees
 less than 180, which allows 5 degrees of overlap on either
 end of the fader with the camera's shutter, to ensure no
 light leaks around the fader shutter when it's fully closed.

 The home sensor for the fader is usually positioned such that
 the fader homes in the closed position.

 The fader is often used as a cap, to wind off black frames,
 and then moved to full open to do normal shooting.

 There are three camera operator commands that directly move
 the fader shutter:

 opn -- open the fader
 cls -- close the fader
 shu 50 -- move the fader to specific positions in degrees

 Normally the 'interp d ..' OPCSDEFS command is configured to

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

233

 convert degrees into actual step positions. For a linear shutter,
 this would be a simple command such as:

 interp d - 0 170 2 0 12000
 | | | | | | |
 | | | | | | End step position (open)
 | | | | | Start step position (closed)
 | | | | Number of step positions in the interpolation
 | | | End position in degrees (open)
 | | Start position in degrees (closed)
 | (No slaving channel)
 The fader channel

 Finding Fader 10 Degree Positions

 For logarithmic faders, setup involves removing the camera
 face plate to expose the actual fader and camera shutters
 so that one can mark 10 degree positions on the camera body.

 1) Remove the camera's face plate, exposing the camera/fader
 shutters

 2) Make sure there is no interpolation already configured
 for the fader channel by running:

 ldefs -c interp d - 0 0 0

 3) Home the camera and fader, and reset the fader's software
 counter to zero:

 ! home c d
 reset d 0

 The fader should now be fully closed, and the camera shutter
 should be in the closed position, where the center of the
 camera's shutter is covering the light path to the film.

 4) Jog the fader using:

 jog d

 ..until the fader is in the full open position. Make note of the
 fader's step counter, as that will be the 'full open' position.
 For the purposes of an example, let's say 'full open' is 54100.

 Use the ESC or 'q' key to break out of jog mode.

 5) Send the fader to the closed position using:

 go d >0

 Using a protractor, mark on the front of the camera the degree
 positions, starting with "0" for the leading edge of the fader
 in the fully closed position, then using the protractor, mark
 every 10 degrees with a fine line on the front of the camera body.

 Label each mark in degrees: 0, 10, 20, etc. until you reach the
 full open position which should be 170.

 There should be 18 marks total, including zero.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

234

 6) Make a table on a piece of paper for all the 0 to 170 degree
 positions. You'll fill out this table in the next steps:

 DEGREES POSITION
 ------- --------
 0 0 <-- usually always zero
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110
 120
 130
 140
 150
 160
 170 54100 <-- this value from step #4

 7) Send the fader to the closed position using:

 go d >0

 8) Now using 'jog d', move the fader to find each 10 degree
 position, moving always in the same direction (to prevent slop).

 Write down the step count shown for each 10 degree position.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

235

 9) Repeat step 8 for every 10 degree mark until you reach 170.

 You should now have a table of numbers that can be plugged
 into an interp command for testing:

 DEGREES POSITION
 ------- --------
 0 0
 10 8200
 20 11600
 30 14100
 40 16800
 50 19100
 60 21400
 70 23600
 80 25600
 90 27850
 100 30350
 110 32600
 120 35100
 130 37500
 140 40100
 150 43600
 160 47850
 170 54100

 10) Using the table you've prepared in step #9, create an interp
 command for the 'd' channel by editing the OPCSDEFS.OPC file,
 and add the command near the bottom of the file in the 'FADER
 AND FOCUS' section. For the above example that would be:

 interp d - 0 170 18
 0 8200 11600 14100 16800 19100 21400
 23600 25600 27850 30350 32600 35100 37500
 40100 43600 47850 54100

 Refer to the manual page for the INTERP(OPCSDEFS) command
 ('man interp')

 11) Now reload the OPCSDEFS.OPC file so that the new interp command
 is configured by running:

 ldefs opcsdefs.opc

 12) Home the 'd' channel and reset the counters using:

 ! home d
 reset d 0

 NOTE: You may want this to be automatic on startup by adding
 the following commands to the OPCSDEFS.OPC file:

 ! home d
 opcscmd reset d 0

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

236

 13) Check the degree positions work by using the SHU(OPCS) command
 to go to every 10 degree mark:

 shu 10
 shu 20
 shu 30
 ..
 shu 170

 Make sure the fader's leading edge reaches each of the 10 degree
 marks accurately.

 If slop in the fader is a problem, configure slop correction for the
 'd' channel using the SLOP(OPCSDEFS) command. This sets the number
 of steps for "slop correction". Refer to the man page for more info.

 14) Once verified, using 'opn' and 'cls' should also reach the 170
 and 0 marks respectively.

 That's it.

 You should now be able to do lap dissolve tests to check for problems.
 When properly configured, cross dissolves between two gray fields should
 not get brighter or darker during the dissolve.

 If you do see pulsation, try to track down the problem by more carefully
 monitoring the 10 degree marks on the front of the camera.

FILTER WHEELS

 Filter wheels are large disks that hold a variety of filters
 in front of the film path, allowing for doing quick wedges
 of a set group of filters on different scenes, or allowing
 computer controlled filter changes during shoots, where filters
 are preloaded into the wheel, and OPCS scripts are devised to
 move to different filters for different scenes automatically.

 Filter wheels should have a single position with NO FILTER,
 and that position should be the 'home' position, so that the
 camera operator can look through the viewer and see the projector
 footage without a filter in the way.

 Filter wheels come in different sizes, from 4 position on up to
 many 10s of filter positions.

 For printers doing YCM printing, a 4 position filter wheel is
 essential to handle the three yellow/cyan/magenta filters needed
 to either combine or split out a color image into 3 separate
 black&white separations.

 Special YCM shooting files can be used to run the shutters
 in such a way that the film can be moving as fast as possible
 for the 3 separate YCM exposures. See 'man velrep' for creating
 custom motor velocity files that can run the camera/projector/
 filter wheel/capping shutter all in sync for the fastest YCM
 shooting possible.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

237

CAPPING SHUTTERS

 Capping shutters are often used when working with film movements
 that involve several seat/unseat operations per frame, such as
 YCM footage, or large format film such as Vista or IMAX where the
 film movements need to cycle several times to move one frame.

 Capping shutters should be *rotational* shutters: a 1/2 disk such
 that 1/2 the disk blocks the light (acting as a cap), and the other
 1/2 exposes light.

 Non-rotational shutters should be avoided, such as:

 CAPPING SHUTTERS TO AVOID

 Solenoid driven caps
 Aperture oriented caps (blade shutters, e.g. Uniblitz)

 These wear out prematurely, as motion picture work involves tens of
 thousands of exposures per day, which is easy to wear out devices
 with MTBF rating of only a million cycles. (If the average use is
 10,000 frames per day, a million cycle limited shutter would wear out
 in 100 days)

 It is advised capping shutters home in the open position, so that
 the camera operator can always look through the viewer to see the
 image in the projectors when the system is idle.

PAN CHANNELS

 Pan channels for the lenses are typically small motors (M0-61 or M0-62),
 that do simple linear motions.

 A stationary home sensor for the pan channel(s) should be configured
 such that the sensor is mounted to the stationary base of the printer
 if possible (avoiding cable movement which can fatigue the cable and
 connection to the sensor) and a bar of thin metal mounted to the moving
 pan head that acts as the "sensor flag", blocking the sensor whenever
 the pan head is to one side of the center (zero) position.

 For example, an east-west pan head where "home" is the center position,
 and the pan head can be moved east or west of that position.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

238

 If the "sensor flag" blocks the sensor whenever the head is positioned
 west of center, this makes it easy to know which direction to move the
 motor to find home during motor homing:

 > If the sensor is blocked, we're WEST of home and need to move east
 > If the sensor is unblocked, we're EAST of home and need to move west

 | |
 |<------------------------ pan distance ----------------------------->|
 | |

 | PAN HEAD BASE |
 | _____________________________________ | AT ZERO (HOME)
 |_| o o o |_| Sensor resting
 |____________________ SENSOR FLAG | on the left EDGE
 | | of sensor flag.
 | |______________|
 | |
 |___|
 Home
 Sensor

 | |
 |<------------------------ pan distance ----------------------------->|
 | |

 | PAN HEAD BASE |
 | _____________________________________ | PANNED WEST OF ZERO
 |_| o o o |_| Sensor blocked by flag
 |____________________ SENSOR FLAG | indicates west of zero.
 | ___ |
 |_______| |____|
 | |
 |___|
 Home
 Sensor

 | |
 |<------------------------ pan distance ----------------------------->|
 | |

 PANNED EAST OF ZERO | PAN HEAD BASE |
 Sensor unblocked by | _____________________________________ |
 flag indicates east |_| o o o |_|
 of zero position. |____________________ SENSOR FLAG |
 ___ | |
 | | |________________|
 | |
 |___|
 Home
 Sensor

 "Home" would be finding the "edge" of the bar, where it transitions from
 one state to another.

 To prevent hardware slop from causing a variance in the home position,
 it's always best to always find home from moving in the SAME DIRECTION.
 Example: we decide to always find home moving EAST. To home the channel:

 > If we're WEST of home, move EAST until we see a transition
 and then stop. This is the home position.

 > If we're EAST of home:
 1) Move WEST until we see a transition and stop.
 2) Move a little more (*) WEST until we're past home.
 3) Now run EAST until we see a transition and stop

 (*) In step #2 when EAST of home, the extra west movement should be
 a little more than the amount of slop known for this hardware. So if
 the slop amount is approx. 800 steps, use 1200 steps for that extra
 movement.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

239

 Note that the most common situation when homing a motor will be
 when the motor is already at the home position (resting on the edge),
 it might be wise to assume this case, and first move the pan head
 off the edge of the sensor by the slop offset (described above),
 so that we can then approach the home sensor in the proper direction
 with any slop removed.

ZOOM/FOCUS CHANNELS

 The configuration of the home sensor for zoom/focus should be similar
 to the PAN CHANNELS (described above).

 For zoom there are two special considerations for setup:

 o Follow focus
 o Exposure compensation

 FOLLOW FOCUS
 In OPCS, follow focus is implemented by using interpolation between
 empirically determined focus points. Which is to say, during setup,
 you pick a fixed number of steps between interpolation points, and
 move the zoom channel to each position, and find focus, recording the
 focus positions for each fixed zoom position.

 Example: Let's say the zoom's entire travel is from step position
 -40000 to +20000, and 0 (zero) is the 1:1 home position. This means
 the total zoom distance is 60000 steps.

 And we decide finding focus positions for every 10000 steps works
 best. So that means there will be 7 focus positions (including zero)
 to find. (60000 / 10000 = 6), then plus one for the zero position.

 Let's say our channel assignments are 'e' for zoom (camera lens),
 and 'f' for focus (camera base).

 Make a small table showing all the zoom positions from -40000 to
 20000 in increments of 10000, and a separate column for the focus
 positions we're going to find:

 ZOOM(E) FOCUS(F)
 ------- --------
 -40000
 -30000
 -20000
 -10000
 0 0 <-- we know this is zero already
 10000
 20000

 We now go through the repeating process of finding the focus
 positions for each of the zoom positions:

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

240

 Finding Focus Positions

 1) Start by making sure there are no interpolations already
 configured for the zoom and focus channels by disabling any
 existing interpolations by running:

 ldefs -c interp e - 0 0 0
 ldefs -c interp f - 0 0 0

 2) Home the two channels, and reset the software counters
 for these two channels to zero:

 ! home e f
 reset ef 0

 3) Load a focus chart in the projector.

 4) Use the viewer in the camera to verify sharp focus for the
 zero position.

 If it's not in focus at zero, you better find out why by
 fixing the HOMEDEFS.HOM file, so that zero for the zoom
 is also zero for the focus channel.

 5) Now we move the zoom (e) to the extreme negative position:

 go e >-40000

 6) Use 'jog f' to jog the f channel until the focus chart is in focus.
 Write this focus position down for the current zoom position in
 the little table (described above).

 7) Move the zoom (e) channel forward 10000 steps, and repeat
 steps 6 and 7 until you fill the table with focus positions
 for each zoom position.

 8) Using your table of numbers, which is let's say:

 ZOOM(E) FOCUS(F)
 ------- --------
 -40000 -212900
 -30000 -153500
 -20000 -96050
 -10000 -43150
 0 0 <-- we know this is zero already
 10000 7800
 20000 13375

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

241

 9) Now edit the OPCSDEFS.OPC file, and create an 'interp' command
 down in the FADER AND FOCUS section that will configure these
 focus positions, so that moving the zoom will cause
 the focus channel to try to keep the projector in focus:

 interp f e -40000 20000 7 -212900 -153500 -96050 -43150 0 7800 13375
 - - ------ ----- - --
 | | | | | These are focus positions from your table
 | | | | |
 | | | | |
 | | | | The number of focus positions
 | | | |
 | | | End zoom position
 | | |
 | | Start zoom position
 | |
 | Zoom channel (lens)
 |
 Focus channel (camera base)

 Make sure there's no other 'interp f e' command in the file..
 if there is, remove it to prevent confusion.

 10) Now reload the OPCSDEFS.OPC file so that the new interp command
 is configured by running: ldefs opcsdefs.opc

 11) Check that focus is maintained by moving the zoom to various
 positions, and check focus. e.g.

 go ef >25000
 go ef >18000

 Note you need to specify both channels for follow focus to work.
 If you just use 'go e >25000', that will just move the zoom without
 doing follow focus.

 That's it.

 If focus seems dodgy for the inbetween positions, you may need to
 double the number of focus positions by adjusting your zoom increment
 and repeating the above procedure.

 So in the above example, instead of using 10000, use 5000 increments
 on the zoom, which will double the number of focus positions to find,
 making a tighter curve.

 In many cases, I've seen needing 30 or 40 interpolation positions
 for accurate follow focus.

ORIGIN
 Gregory Ercolano, Topanga, California 04/12/00

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

242

opcsiface(DOCS)

OPCSIFACE(DOCS) Optical Printer Control System OPCSIFACE(DOCS)

NAME
 OPCSIFACE - OPCS Interfacing docs

--
 PIO-100 - PARALLEL PORT INTERFACING
--

NAME
 pio-100 - OPCS parallel port I/O interface board

DESCRIPTION
 The OPCS parallel port interface board (PIO-100) was designed to
 simplify wiring between the computer parallel port and the various
 digital sensors on the printer, using standard RJ-45 patch cables
 to route the signals to each sensor. The board also optically
 isolates the computer and the optical printer's digital sensors,
 namely home sensors, buckle/viewer switches, deenergize options,
 tension motors, etc.

 There are several revisions of this board:

 REV 3/Feb 2010: First use by Disney (YCM printers), used by others
 See: http://seriss.com/opcs/docs/parallel-port-interface/rev3

 REV 6/Jan 2021: First use by Mike Ferriter, Andy Kaiser,
 Bruce Heller, Carl Spencer, etc.
 See: http://seriss.com/opcs/pio-100/

REV 6 "PIO-100" Parallel I/O Board - Jan 2021
===
 This board has a webpage with schematics, wiring diagrams, PCB layouts,
 photos, and other useful information here:

 http://seriss.com/opcs/pio-100/

 As of this writing (Aug 2021), REV 6 is the latest revision of this board.
 This board was branded with the model number "PIO-100", to differentiate
 it from the other OPCS boards (A800, SD-800, etc).

 At the top, a parallel port connector is connected to the computer's
 parallel port via a DB-25 ribbon cable. On the right side, a single
 12V power connector. Derives 5V with an onboard 7805 used for the
 computer interface.

 While this board is optically isolated for the signals, there is a
 common ground between the 12V and 5V supplies.

 Along the bottom are 16 RJ-45 connectors arranged in two-tier
 connector blocks. These fan out to the optical printer's sensors
 and motor controls as individual RJ-45 patch cables, one per
 device. These devices can be 12V home sensors (or 'optical sensors'),
 tension motor control relays (SSR's), buckle/viewer switches,
 motor enable/disable controls, etc.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

243

 The REV 6 board looks like this:

 PARALLEL PORT

 ____________________________|_______________|__________________________
_ _		_____								

				_____ _____	7805					
	_				_____		_____			
	_		_____							
_________ _________ _________ _________ _________ __										
	_________		_________		_________		_________		_________	-
+	__	POW								
	
	
NPN PNP										
______________________________ ______________________________										
	TENS TENS TENS OUT		IN IN IN IN							
	(2) (3) (4) (5)		(10) (11) (12) (13)							
	______________________________		______________________________							
	OUT OUT OUT OUT		IN							
	(6) (7) (8) (9)		(15) X X X							
__	______________________________	__	______________________________	___						

 ____________________________/ ____________________________/
 Eight RJ-45 Eight RJ-45
 Connectors Connectors
 (Two Tiers) (Two Tiers)

 Regarding the labels on the RJ-45 connectors,
 the numbers in parentheses are the parallel port pin#s:

 > Outputs (from the computer) are pins 2 thru 9.
 > Inputs (to the computer) are pins 10 thru 13, and 15.

 TENSION OUTPUTS

 At the bottom left, there are three 'TENSION' outputs intended to control
 the SSR relays for tension motors, one RJ-45 output cable per pair of
 feed/takeup motors, one pair for each film movement, which is typically:

 TENS(2) -- Aerial Projector (feed/takeup)
 TENS(3) -- Main Projector (feed/takeup)
 TENS(4) -- Camera (feed/takeup)

 Changing a bit on one of these outputs inverts the state of the
 feed/takeup so that only one of the two tension motor relays is on,
 and the other off. In the OPCS software's setup file, OPCSDEFS.OPC,
 the TENSION(OPCSDEFS) command is used to configure this for each
 channel that supports tension motors.

 When the channel is running forward, the TAKEUP motor is energized,
 and FEED is disabled. Typically a small high power low ohm rating
 resistor lies across each SSR relay's output, allows a small amount
 of 110VAC to run the tension motor as a "holding current" when the
 relay is off. When the relay is on, full 110 VAC drives the tension
 motor. Actual voltage to the motors are usually tunable with a variac
 the camera operator can set.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

244

 ### TENSION(2,3,4) OUTPUTS ###
 ### RJ-45 PINOUTS ###

 PIN# DESCRIPTION COLOR
 1 GND WHT/ORN
 2 TAKEUP(-) ORN
 3 GND WHT/GRN
 4 TAKEUP(+) BLU
 5 GND WHT/BLU
 6 FEED(-) GRN
 7 GND WHT/BRN
 8 FEED(+) BRN

 GENERIC OUTPUTS

 Since the first three output pins of the parallel port are used for
 tension motors, the remaining five pins are generic optically isolated
 12V outputs that can be used for various purposes. Often these are
 used to deenergize channels, allowing the software to unlock motor(s)
 on command, allowing the operator to freewheel the motor, then the
 software can re-home the motor on completion.

 Generic output control can be done via the 'home' command as configured
 in the HOMEDEFS.HOM file, using either the 'setbit' or 'clrbit' commands.
 Similar commands in the OPCSDEFS.OPC file and/or OPCS run scripts
 can be used to change the parallel port's bits via command control,
 e.g.

 ldefs -c setbit 0378 8 0 -- set parallel port pin #5 (bitmask 0x08)
 ldefs -c clrbit 0378 8 0 -- clear parallel port pin #5 (bitmask 0x08)

 ### OUT(5,6,7,8,9) OUTPUTS ###
 ### RJ-45 PINOUTS ###

 PIN# DESCRIPTION COLOR
 1 GND WHT/ORN
 2 GND ORN
 3 GND WHT/GRN
 4 N/C BLU
 5 GND WHT/BLU
 6 OUTPUT GRN <-- LOW=GND HI=+12V
 7 GND WHT/BRN
 8 +12 BRN

 GENERIC INPUTS

 The generic inputs IN(10) thru IN(13) and IN(15) can be used for either
 home sensors, buckle/viewer switches, etc. These respond to voltages
 typically 12V (for "on") or pulled to Ground (for off).

 +12 and Ground signals are provided on each RJ-45 port to be used for
 driving the home sensor's internal circuits and for 12v/Gnd reference.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

245

 Home sensors are typically configured for the 'home' command using the
 HOMEDEFS.HOM file's 'homeport' command, which procedures in that file
 can then use to test the home sensor to conditionally run motors.

 Buckle and Viewer switches can also be used to drive these inputs.

 Schematics are available on the website, and also are printed on the
 board's silk screen for reference, along with simple wiring diagrams.

 ### IN(10,11,12,13,15) ###
 ### RJ-45 PINOUTS ###

 PIN# DESCRIPTION COLOR
 1 GND WHT/ORN
 2 GND ORN
 3 GND WHT/GRN
 4 N/C BLU
 5 GND WHT/BLU
 6 IN GRN
 7 GND WHT/BRN
 8 +12 BRN

 INPUT JUMPERS

 To support both NPN and PNP home sensors, a jumper block is provided
 on the board to allow either type to be supported. The default is NPN,
 which is the most common sensor type. It is advised you standardize
 on only one type of sensor for all sensors, so they can be easily
 reassigned without having to change the jumpers.

 WARNING: BE SURE THE BOARD'S 12V POWER IS REMOVED BEFORE CHANGING JUMPERS.
 If you must change the jumpers while the board is "hot", remove
 both jumpers completely before replacing to the new positions.
 AVOID changing one jumper at a time, as that can short the 12V
 power supply during mid-change.

 CAVEATS

 The RJ-45 connectors labeled "X" are unused for I/O, but can be used
 for access to +12V and GND from the board for various purposes (such
 as 12V power lights, etc)

 On the REV 6 board, there are a TWO MINOR ERRORS that will be fixed
 in future revisions (probably REV 6A and up):

 > Many of the little diagrams on the silk screen are wrong.
 White labels are affixed over these problem diagrams to make
 corrections. All REV 6 boards in the field should already have
 these white 'fix labels' on them.

 > Two of the outputs, OUT(8) and OUT(9), do not match the normal wiring
 pattern of the other connectors. It's advised you do not use OUT(8)
 and OUT(9) on the REV 6 board, for consistency.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

246

REV 3 "Parallel Port Interface Board" - Feb 2010
==
 This board has a webpage with schematics, wiring diagrams, PCB layouts,
 photos, and other useful information here:

 http://seriss.com/opcs/docs/parallel-port-interface/rev3/

 The REV 3 board uses separate +5V and +12V power, to ensure complete
 isolation. But it is possible to use a single dual +5v/+12v power supply
 and share the signal ground.

 At the top, a parallel port connector is connected to the computer's
 parallel port via a ribbon cable. On the sides, power connectors for
 the input +12V and +5V. Along the bottom, RJ-45 connectors are used
 to fan out to the optical printer's sensors and motor controls; home
 sensors, tension motors, buckle/viewer switches, motor enable/disable
 controls, etc. It looks like this:

 PARALLEL PORT

 __|____________|______________________
_		_						
		+5/+12	____________	+5/+12				
		POW CHAIN _____ _____ POW						
	_	OUTPUT	_____		_____		_	
_______ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _								
	_______		_		_		_	
______ ______								
	______		______					
______________________________________ _______________________________________								
PWR PWR PWR IN IN IN IN IN	TEN TEN TEN OUT OUT OUT OUT OUT							
1 2 3 15 13 12 11 10	9 8 7 6 5 4 3 2							
______________________________________	_______________________________________							

 ___________/ ____________________/ ___________/ _____________________/
 RJ-45 RJ-45 RJ-45 RJ-45
 Power Inputs from Buckle, Tension Outputs for
 Outputs Viewer, Home sensors Motor various uses
 Outputs

 For the most part, the buckle/viewer sensors are configured by the
 BUCKLE(OPCSDEFS) and VIEWER(OPCSDEFS) commands in the OPCSDEFS.OPC
 file to define the port and bit mask values corresponding to the
 RJ-45 ports used for those features.

 The home sensors are configured in the HOME(DOCS) program's
 HOMEDEFS.HOM to define the port and bit mask values corresponding
 to the RJ-45 ports used for those features.

 The tension motor controls are configured with the TENSION(OPCSDEFS)
 command in the OPCSDEFS.OPC file to define the port and bit mask
 values corresponding to the RJ-45 ports used for those features,
 and are wired specially with Crydom solid state relays to control
 the AC tension motors.

 Various other inputs/outputs can be controlled by these ports, such as
 energizing/deenergizing certain motors via OPCS commands. An example
 would be the LOAD command, which might run the motors by small amounts
 to unseat the film, before deenergizing for manual adjustment.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

247

PARALLEL CONNECTOR
 The parallel connector on the OPCS parallel port interface board is
 a female DB-25 connector, which should be connected to one of the
 computer's parallel ports.

 PIN PORT MASK I/O RJ-45 DESCRIPTION
 2 0x378 0x01 Out OUT(2) Generic output
 3 0x378 0x02 Out OUT(3) Generic output
 4 0x378 0x04 Out OUT(4) Generic output
 5 0x378 0x08 Out OUT(5) Generic output
 6 0x378 0x10 Out OUT(6) Generic output
 7 0x378 0x20 Out OUT(7) Generic output
 8 0x378 0x40 Out TEN(8) Camera Tension
 9 0x378 0x80 Out TEN(9) Projector Tension
 10 0x379 !0x40 In IN(10) Generic Input
 11 0x379 !0x80 In IN(11) Generic Input
 12 0x379 0x20 In IN(12) Generic Input
 13 0x379 0x10 In IN(13) Generic Input
 15 0x379 0x08 In IN(15) Generic Input
 18-25 - - Gnd - Ground

RJ-45 CONNECTORS

 INPUTS - IN(10-15)

 The 5 generic inputs are real time inputs that can be read by the
 computer. The OPCS software can be configured to make use of these
 inputs by specifying the corresponding port/mask via the OPCSDEFS.OPC
 or HOMEDEFS.HOM files.

 Typically generic inputs are used for either home sensors or
 buckle/viewer switch sensing.

 ### IN(10) - IN(15) ###
 ### RJ-45 PINOUTS ###

 PIN# DESCRIPTION COLOR
 1 Chassis WHT/ORN
 2 GND ORN
 3 Chassis WHT/GRN
 4 - BLU
 5 Chassis WHT/BLU
 6 IN GRN
 7 Chassis WHT/BRN
 8 +12 BRN

 OUTPUTS - OUT(2-7)

 The 6 generic outputs can be controlled directly by commands in HOMEDEFS.HOM
 or OPCSDEFS.OPC, e.g. the SETBIT, CLRBIT, and XORBIT commands.

 Typically, generic outputs are used for deenergizing motors to allow
 manual load/unload of film with the custom LOAD and LINEUP commands.

 ### OUT(2) - OUT(7) ###
 ### RJ-45 PINOUTS ###

 PIN# DESCRIPTION COLOR
 1 Chassis WHT/ORN
 2 GND ORN
 3 Chassis WHT/GRN
 4 - BLU
 5 Chassis WHT/BLU
 6 OUT GRN
 7 Chassis WHT/BRN
 8 +12 BRN

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

248

 TENSION OUTPUTS - TEN(8) AND TEN(9)

 The tension motor outputs TEN(8) and TEN(9) can control the FEED and TAKEUP
 motors for camera and projector.

 When parallel port pin 8's bit changes from 0 to 1, the TEN(8) RJ-45
 connector's FEED and TAKEUP outputs will change state, always being
 the compliment of each other (ie. if FEED is 'on', TAKEUP will be 'off').

 ### TEN(8) AND TEN(9) ###
 ### RJ-45 PINOUTS ###

 PIN# DESCRIPTION COLOR CRYDOM PIN#
 1 Chassis WHT/ORN 4
 2 -TAKEUP ORN -
 3 Chassis WHT/GRN 3
 4 +TAKEUP BLU -
 5 Chassis WHT/BLU 4
 6 -FEED GRN -
 7 Chassis WHT/BRN 3
 8 +FEED BRN -

 POWER OUTPUTS - PWR(1) THRU PWR(3)

 PWR-1 through PWR-3 can be used to supply +12V power to the printer.

 ### PWR-1 THRU PWR-3 ###
 ### RJ-45 PINOUTS ###

 PIN# DESCRIPTION COLOR CRYDOM PIN#
 1 Chassis WHT/ORN 4
 2 GND ORN -
 3 Chassis WHT/GRN 3
 4 - BLU -
 5 Chassis WHT/BLU 4
 6 - GRN -
 7 Chassis WHT/BRN 3
 8 +12 BRN -

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

249

--
 SD-800 - STEPPER DISTRIBUTION INTERFACE
--

NAME
 sd-800 - OPCS 8 channel "stepper distribution" (SD) card

DESCRIPTION
 The OPCS "Stepper Distribution" card (SD-800) was designed to
 simplify wiring between the computer step pulse generator card
 (e.g. RTMC16, RTMC48, Kuper Industrial, A800..) and the stepper
 motor driver modules (Centent, Gecko, LeadShine, etc) by breaking
 out the DB-37 connector into separate RJ-45 patch cables, one per
 stepper drive channel.

 This board really has no active features on it, other than a fanout
 to simplify wiring. Optional pullup resistor networks can be used
 if the application requires open collector outputs from the card
 to be pulled up to +5V for the idle state to prevent noise.

 As of this writing, there is only one version of the board, REV 0,
 which looks like this:

 DB-37 PORT
 (To RTMC or A800 cards)

 __________|____________________|_________
 | | | |
 | |____________________| |
 | |
 | |
 | |
 | |
 | ______________________________ |
 | | | |
 | | A B C D | |
 | |______________________________| |
 | | | |
 | | E F G H | |
 |____|______________________________|_____|

 ____________________________/
 Eight RJ-45
 Connectors
 (Two Tiers)

 Typically the female DB-37 connector on the board is connected
 to the DB-37 connector on the ISA stepper pulse generator card
 plugged into the the DOS computer using 6' male/male cable.

 And separate RJ-45 patch cables are wired to the A/B/C/D..
 ports at the bottom of the board, which run out to the individual
 stepper drives (Centent, Gecko, LeadShine, etc).

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

250

 The DB-37 follows Kuper's pinout; see 'man kuper' for more info.
 The RJ-45 pinout diagram is on the board, but is basically:

 RJ-45 WIRE CENTENT GECKO LEADSHINE
 PIN# SIGNAL COLOR (*) DRIVE DRIVE DRIVE
 ---- ---------- -------- ----------- ----------- ------------
 1 GND - N/C N/C N/C
 2 GND - N/C N/C N/C
 _ 3 GND - N/C N/C N/C
 DIR | 4 DIRECTION BLU DIRECTION (8) DIR DIR-(DIR)
 |_ 5 +5V WHT/BLU +5 VOLTS DC (10) COMMON DIR+(5V-24V)
 _ 6 GND - N/C N/C N/C
 STP | 7 +5V WHT/BRN N/C N/C PUL+(5V-24V)
 |_ 8 STEPS BRN STEP PULSE (9) STEP PUL-(PUL)

 (*) Premade RJ-45 patch cables for cat5 and cat5e usually have
 the standard wire colors shown above. For the signals used,
 the wiring colors are the same for 568A and 568B.

 Basically only 4 of the 8 wires are used. In some cases only 3 wires
 are used (Centent & Gecko).

 Please note these signals are DIRECTLY FROM THE COMPUTER MOTHERBOARD,
 so be very careful with them. Do not let them short to chassis ground
 on the printer, or to each other.

RJ-45 CABLE TERMINATION

 For unused (N/C) wires, be sure to isolate them from each other
 to prevent shorts. Cut them short to the stripped insulation or
 stagger the lengths of the unused wires to prevent the frayed
 ends from shorting into each other.

 Wrap the unused conductors with a small piece of heat shrink:

 4 wires to
 Drive Terminals

 / \

 ▐▌ ▐▌ ▐▌ ▐▌ <-- tinned wire tips
 ▐▌ ▐▌ ▐▌ ▐▌
 ▒▒ ▒▒ ▒▒ ▒▒
 ▒▒ ▒▒ ▒▒ ▒▒ 4 unused wires
 ▒▒ ▒▒ ▒▒ ▒▒ _________
 ▒▒ ▒▒ ▒▒ ▒▒ / \
 ...▒▒.▒▒.▒▒.▒▒.................
 : ▒▒ ▒▒ ▒▒ ▒▒ :
 : ▒▒ ▒▒ ▒▒ ▒▒ ▒▒ :
 : ▒▒ ▒▒ ▒▒ ▒▒ ▒▒ ▒▒ :
 : ▒▒ ▒▒ ▒▒ ▒▒ ▒▒ ▒▒ ▒▒ : <-- heat shrink wrap
 : ▒▒ ▒▒ ▒▒ ▒▒ ▒▒ ▒▒ ▒▒ ▒▒ :
 :▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓:
 :▓ ▓:
 :▓ ▓:
 :▓...........................▓:
 ▓ ▓
 ▓ RJ-45 ▓
 ▓ CABLE ▓ <-- RJ-45 outer insulation
 ▓ ▓

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

251

 If heat shrink is not available, a blob of black liquid electrical
 tape at the end of the cables outer insulation can be used instead:

 4 wires to
 Drive Terminals

 / \

 ▐▌ ▐▌ ▐▌ ▐▌ <-- tinned wire tips
 ▐▌ ▐▌ ▐▌ ▐▌
 ▒▒ ▒▒ ▒▒ ▒▒
 ▒▒ ▒▒ ▒▒ ▒▒ 4 unused wires
 ▒▒ ▒▒ ▒▒ ▒▒ _________
 ▒▒ ▒▒ ▒▒ ▒▒ / \
 ::::▒▒:▒▒:▒▒:▒▒::::::::::::::::::
 :::::▒▒:▒▒:▒▒:▒▒:::▒▒::::::::::::::
 :::::▒▒:▒▒:▒▒:▒▒:::▒▒:▒▒:::::::::::
 :::::▒▒:▒▒:▒▒:▒▒:::▒▒:▒▒:▒▒::::::::
 ::::::▒▒:▒▒:▒▒:▒▒:::▒▒:▒▒:▒▒:▒▒::::::
 :::::▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓::::: <-- blob of "Liquid
 :::::▓:::::::::::::::::::::::::::▓::::: Electrical Tape"
 :::::▓:::::::::::::::::::::::::::▓:::::
 ::::▓:::::::::::::::::::::::::::▓::::
 ▓ ▓
 ▓ RJ-45 ▓
 ▓ CABLE ▓ <-- RJ-45 outer insulation
 ▓ ▓

 Be sure the ends of the unused wires are well isolated from
 the open air, and from each other during drying.

ISOLATE UNUSED RJ-45 CONDUCTORS

 Unused conductors on the SD-800 and SD-1600 are usually just the
 chassis grounds, and are not critical to isolate from each other.

 However, unused conductors on the PIO-800 Parallel Input/Output
 boards are typically +5V and GND from the computer, and therefore
 should be /carefully isolated/ from each other.

 When wiring SD-800 and SD-1600 boards to the Centent or Gecko drives,
 strip the two +5V signal wires and twist them together before tinning
 with solder. Don't let one of the +5V signal wires hang loose,
 because if it touches anything else, it will short the computer's
 +5V supply, which at best reboots the machine, or at worst toasts
 the computer's mother board.

STRIPPING RJ-45 CABLES

 When wiring to the screw clamp terminals, tin the wires (if they're
 stranded) before inserting them, to prevent wire fraying and shorts
 from stray pieces of stranded wire.

 When tinning stranded wire, first twist the strands into a spiral,
 then dip the twisted strands into some flux. This way when solder is
 applied, the extra flux helps the solder wick down the conductors
 beneath the insulation, stiffening the conductors beyond insulation's
 edge, preventing flexion at the end of the wire.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

252

 Tinning will also cover over any nicks in the conductors that may
 have occurred during wire stripping with solder, stiffening the nicks,
 preventing fatigue:

 BEFORE Solder Tinning

 ████
 ████
 ████
 ████
 ████
 ██¡ <-- copper conductor "nicked"
 ████ during insulation stripping
 ▒▒▒▒▒▒▒▒▒▒
 ▒▒▒▒▒▒▒▒▒▒
 ▒▒▒▒▒▒▒▒▒▒ <-- single conductor
 ▒▒▒▒▒▒▒▒▒▒ insulation
 ▒▒▒▒▒▒▒▒▒▒

 AFTER Solder Tinning

 ████
 ████
 ████
 ████
 ████
 ████ <-- "nick" covered by solder
 ████
 ▒▒▒▒▒▒▒▒▒▒
 ▒▒▒▒▒▒▒▒▒▒ <-- solder wicked down wire
 ▒▒▒▒▒▒▒▒▒▒ below insulation edge
 ▒▒▒▒▒▒▒▒▒▒
 ▒▒▒▒▒▒▒▒▒▒

RJ-45 STRAIN RELIEF

 Don't let the cables hang by their screw terminals at motor drives
 and/or termination at home sensors. Casual wire flexion will cause
 wire fatigue, leading to breakage or intermittent signal dropouts.

 Secure cables to the chassis or drive units by their insulation
 within approx 6" of the wire termination point using zip ties or
 nylon straps/cleats.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

253

--
 A800 - STEP PULSE GENERATOR INTERFACE
--

NAME
 A800 - Seriss Corp. A800 stepper motor control card

DESCRIPTION
 The A800 card is a "short slot" ISA card for the IBM PC that can
 generate steps/direction pulse streams to control up to 8 stepper
 motors at once.

 The card uses two PIC chips to manage the stepper pulse generation.
 The PIC's firmware and MS-DOS driver "A800DRV.COM" source code are
 open source and available from:

 https://github.com/erco77/a800-opcs-pic-asm

 OPCS communicates with the A800 card by way of the MS-DOS device driver
 "A800DRV.COM", which provides a standard low level interface to the
 card that OPCS can make use of to run the motors efficiently.

 The A800DRV.COM driver must be loaded *before* running the OPCS
 software. This can be installed either by the AUTOEXEC.BAT,
 or by a separate batch script that invokes OPCS.

 If the A800 card's jumpers are default (BaseAddr=300 and IRQ=5),
 then you can install the driver with just:

 a800drv

CONFIGURING THE BASEADDR AND IRQ
 In OPCS K1.xx, the a800 card did not exist and is not supported.

 In OPCS K2.00 through K2.09, the base address is configured in
 OPCSDEFS.OPC with the 'baseaddr' command. IRQ not configurable.

 In OPCS K2.10 and up, the A800DRV.COM driver allows both the
 base address and IRQ to be configured on the command line.
 The default would be:

 a800drv -b300 -i5 <-- Sets base address=0300h, IRQ=5
 | |
 | IRQ=5
 Base Addr=300

 ..and if your A800 jumpers are set differently, then specify
 matching values accordingly. e.g. if the card's jumpers are
 set to BaseAddr=340 and IRQ=6, then start the driver with:

 a800drv -b340 -i6

 To list the A800DRV driver's options, run 'a800drv -help'.
 If it does not show a list of options, then it is an older version
 that does not support command line options.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

254

TECHNICAL SYNOPSIS
 When the software wants to move a motor, it provides 8 separate
 12 bit velocity values, one per motor channel. And 107 of these
 velocity values are sent per second to the card using the hardware
 interrupt on IRQ 5.

 Currently only 8 bits of the 12bit value are used for motor speeds.
 i.e. the lowest velocity is 1 (107 Hz) and the highest velocity is
 255 (27,285 Hz). Values above 255 are clipped by the hardware,
 as the PIC chips are limited by their speed. The high bit (0x8000)
 is the motor direction bit; 0=forward, 1=reverse.

 The software has to keep up with this transmission rate, otherwise
 it will lose track of the motor positions. The A800DRV.COM device
 driver provides a 64k ring buffer for the motor velocities that OPCS
 updates in real time while the motors are running.

 The OPCS software and A800DRV.COM use INT 99h to intercommunicate,
 providing the address of the ring buffer, and start/stop commands.

 The A800 card generates 107 interrupts per second to the A800DRV.COM
 driver, each interrupt feeds 8 velocities from the tail of the ring
 buffer to the A800 card, and increments the tail's index to point
 to the next 8 values in the ring buffer. Meanwhile, the OPCS software
 feeds velocities into the head of the ring buffer, always keeping ahead
 of the tail. If the tail catches up to the head prematurely, this
 causes a SYNC FAULT error, which should never happen unless something
 is wrong with the computer.

OPCS A800 CARD
==============
This card controls 8 axes and is a half sized IBM PC ISA card.
For complete info on this card, see: http://seriss.com/opcs/a800

 *** A800 ***

 | _____ __________ __________ A800 |
 ||16Mhz| | CPU2 | | CPU1 | REV-A1 |
 ||Xtal | |__________| |__________| ____|_
 ||_____| ____ 74HCT04 | | | | |
 | | | ______ | | |
 | |8255| |______| | | |
 | | | ______ | | | DB-37
 | BASE | | |______| | | | Connector
 | ______ ADDR | | ______ | | | | | | |
 | |______| :: IRQ | | |______| | | |
 | _______ :: :: | | | | |
 | |_______| :: :: |____| |____|_|
 | :: :: |
 |_________________________ ___|
 |...................|
 ||||||||||||||||||||

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

255

 DB-37 Connector (similar to Kuper):

 PIN# SIGNAL PIN SIGNAL

 1 - N/C 20 - +5VDC
 2 - STEP A 21 - DIR A
 3 - STEP B 22 - DIR B
 4 - STEP C 23 - DIR C
 5 - STEP D 24 - DIR D
 6 - STEP E 25 - DIR E
 7 - STEP F 26 - DIR F (*) = JP3 configures DB37 Pin#19:
 8 - STEP G 27 - DIR G "+5" - Makes Pin #19 +5 VDC
 9 - STEP H 28 - DIR H "GND" - Makes Pin #19 GND (default)
 10 - N/C 29 - N/C
 11 - N/C 30 - N/C
 12 - N/C 31 - N/C NOTE: When fitted with 74LS07 chips,
 13 - N/C 32 - N/C outputs are OPEN COLLECTOR TTL.
 14 - N/C 33 - N/C
 15 - N/C 34 - N/C When those chips are replaced with
 16 - N/C 35 - N/C 74ALS1034N, outputs swing a full
 17 - N/C 36 - N/C +5/GND and are CMOS/TTL compatible.
 18 - N/C 37 - N/C
 19 - GND(*)

BASE ADDRESS (JP1)
==================
 Closeup of the 'BASE ADDRESS' jumpers (JP1), which sets the base
 address of the 8255 chip's I/O port registers:

 | BASE ADDR |
 |___________|
 | |
 | 200 o o |
 | 240 o o |
 | 280 o o |
 | 2C0 o o |
 | 300 o o <-- Default jumper for 300 across these two pins
 | 340 o o |
 | 380 o o |
 | 3C0 o o |
 |___________|
 JP1

 A800 Base Address Jumpers

 Always defer to the board's labeling (if any), as the board
 designs may have changed since this document's writing (May 2020).

DEFAULTS:
 This board has labels for the BASE ADDRESS and IRQs:
 "300" is the default base address (5th pair of pins from top jumpered).
 "IRQ5" is the default IRQ (4th pair of pins from top jumpered).

DB-37 OUTPUT SIGNALS
====================
 The STEPS output are normally high (+5) during idle,
 and fall low (GND) to pulse the motor a single step.

 The outputs for DIR (direction) are logic hi (+5) for forward,
 and logic low (GND) for reverse.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

256

 The output signals can either be CMOS hi/low levels, or can be
 "open collector" (where logic 'hi' is 'open', and logic low is gnd).
 Which it is depends on the chips installed in the three chip positions
 to the left of the DB-37 connector on the A800 board:

 74HCT04 -- CMOS high/low levels (default)
 74LS07 -- Open Collector

 For controlling the modern DM542 and FMD27400 motor drivers,
 the 74HCT04 chips are recommended in these positions.

 For Centent and Gecko drives, traditionally 74LS07 chips were used,
 but will probably also work with the 74HCT04's.

 While both chips work on all drives, analysis with an oscilloscope
 monitoring the stepper drive inputs may reveal one chip is better
 than the other for noise reduction. With 6' cables, 74HCT04 seems
 the best choice.

 Always defer to the board's silk screen labelling, as the board
 designs may change since this document's writing (May 2020).

HISTORY
 Greg Ercolano designed this card in May/June 2020, and the driver
 software, A800DRV.COM. This card uses "PIC chips", which are
 programmed with firmware written in the processor's native assembly
 language for speed and consistent timing for generating the steps
 and direction motor signals.

SEE ALSO
 RTMC16(DOCS) - notes on the Kuper Controls RTMC16 motor control card
 RTMC48(DOCS) - notes on the Kuper Controls RTMC48 motor control card
 8255(DOCS) - how to control 8255 based digital I/O cards
 KUPER(DOCS) - documentation on the kuper card connectors
 SD-800(DOCS) - 8 channel stepper distribution board (simplify DB-37 wiring)
 SD-1600(DOCS) - 16 channel stepper distribution board (simplify DB-37 wiring)

AUTHOR
 Greg Ercolano / Seriss Corporation 2021

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

257

parallel(DOCS)

PARALLEL(DOCS) Optical Printer Control System PARALLEL(DOCS)

 NAME
 parallel - parallel port pinout and DOS monitoring tool

 PARALLEL PORT PINOUT CHART

 PIN I/O NAME PORT MASK (hex)

 1 out strobe 3be/37a !01
 2 out data0 3bc/378 01
 3 out data1 3bc/378 02
 4 out data2 3bc/378 04
 5 out data3 3bc/378 08
 6 out data4 3bc/378 10
 7 out data5 3bc/378 20
 8 out data6 3bc/378 40
 9 out data7 3bc/378 80
 10 in acknow 3bd/379 40
 11 in busy 3bd/379 !80
 12 in out of pap 3bd/379 20
 13 in select 3bd/379 10
 14 out autofeed 3be/37a !02
 15 in error 3bd/379 08
 16 out init 3be/37a 04
 17 out select 3be/37a !08
 18-25 ground ground - -

 PARALLEL PORT MONITOR PROGRAM
 The OPCS software comes with parallel.exe, a program that monitors
 the real time status of the IBM PC's parallel ports. Run 'parallel.exe'.

 SCREENSHOT:

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

258

 USAGE
 parallel [-h] [port|lpt#]

 EXAMPLES
 parallel - monitor LPT1 (default)
 parallel 1 - monitor LPT1
 parallel 2 - monitor LPT2
 parallel 3 - monitor LPT3
 parallel 378 - monitor parallel port at base address 0378h
 parallel -h[elp] - help screen

 KEYS
 UP/DOWN - move edit cursor up/down
 ENTER - toggles state of output (when cursor on an output)
 ESC - quit program

 While the edit cursor is positioned on an input, the speaker makes
 a 3000 HZ tone if the input is HIGH, and makes no sound if LOW.

 SOURCE
 The GPL3 Turbo-C source code for the parallel port program can be
 found at: http://github.com/erco77/parallel-dos

 The binary "parallel.exe" can be downloaded from:
 http://seriss.com/opcs/ftp/

 ORIGIN
 Gregory Ercolano, Los Feliz California xx/xx/1988

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

259

pio-100(DOCS)

PIO-100(DOCS) Optical Printer Control System PIO-100(DOCS)

NAME
 pio-100 - OPCS parallel port I/O interface board

DESCRIPTION
 The OPCS parallel port interface board (PIO-100) was designed to
 simplify wiring between the computer parallel port and the various
 digital sensors on the printer, using standard RJ-45 patch cables
 to route the signals to each sensor. The board also optically
 isolates the computer and the optical printer's digital sensors,
 namely home sensors, buckle/viewer switches, deenergize options,
 tension motors, etc.

 There are several revisions of this board:

 REV 3/Feb 2010: First use by Disney (YCM printers), used by others
 See: http://seriss.com/opcs/docs/parallel-port-interface/rev3

 REV 6/Jan 2021: First use by Mike Ferriter, Andy Kaiser,
 Bruce Heller, Carl Spencer, etc.
 See: http://seriss.com/opcs/pio-100/

REV 6 "PIO-100" Parallel I/O Board - Jan 2021
===
 This board has a webpage with schematics, wiring diagrams, PCB layouts,
 photos, and other useful information here:

 http://seriss.com/opcs/pio-100/

 As of this writing (Aug 2021), REV 6 is the latest revision of this board.
 This board was branded with the model number "PIO-100", to differentiate
 it from the other OPCS boards (A800, SD-800, etc).

 At the top, a parallel port connector is connected to the computer's
 parallel port via a DB-25 ribbon cable. On the right side, a single
 12V power connector. Derives 5V with an onboard 7805 used for the
 computer interface.

 While this board is optically isolated for the signals, there is a
 common ground between the 12V and 5V supplies.

 Along the bottom are 16 RJ-45 connectors arranged in two-tier
 connector blocks. These fan out to the optical printer's sensors
 and motor controls as individual RJ-45 patch cables, one per
 device. These devices can be 12V home sensors (or 'optical sensors'),
 tension motor control relays (SSR's), buckle/viewer switches,
 motor enable/disable controls, etc.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

260

 The REV 6 board looks like this:

 PARALLEL PORT

 ____________________________|_______________|__________________________
_ _		_____								

				_____ _____	7805					
	_				_____		_____			
	_		_____							
_________ _________ _________ _________ _________ __										
	_________		_________		_________		_________		_________	-
+	__	POW								
	
	
NPN PNP										
______________________________ ______________________________										
	TENS TENS TENS OUT		IN IN IN IN							
	(2) (3) (4) (5)		(10) (11) (12) (13)							
	______________________________		______________________________							
	OUT OUT OUT OUT		IN							
	(6) (7) (8) (9)		(15) X X X							
__	______________________________	__	______________________________	___						

 ____________________________/ ____________________________/
 Eight RJ-45 Eight RJ-45
 Connectors Connectors
 (Two Tiers) (Two Tiers)

 Regarding the labels on the RJ-45 connectors,
 the numbers in parentheses are the parallel port pin#s:

 > Outputs (from the computer) are pins 2 thru 9.
 > Inputs (to the computer) are pins 10 thru 13, and 15.

 TENSION OUTPUTS

 At the bottom left, there are three 'TENSION' outputs intended to control
 the SSR relays for tension motors, one RJ-45 output cable per pair of
 feed/takeup motors, one pair for each film movement, which is typically:

 TENS(2) -- Aerial Projector (feed/takeup)
 TENS(3) -- Main Projector (feed/takeup)
 TENS(4) -- Camera (feed/takeup)

 Changing a bit on one of these outputs inverts the state of the
 feed/takeup so that only one of the two tension motor relays is on,
 and the other off. In the OPCS software's setup file, OPCSDEFS.OPC,
 the TENSION(OPCSDEFS) command is used to configure this for each
 channel that supports tension motors.

 When the channel is running forward, the TAKEUP motor is energized,
 and FEED is disabled. Typically a small high power low ohm rating
 resistor lies across each SSR relay's output, allows a small amount
 of 110VAC to run the tension motor as a "holding current" when the
 relay is off. When the relay is on, full 110 VAC drives the tension
 motor. Actual voltage to the motors are usually tunable with a variac
 the camera operator can set.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

261

 ### TENSION(2,3,4) OUTPUTS ###
 ### RJ-45 PINOUTS ###

 PIN# DESCRIPTION COLOR
 1 GND WHT/ORN
 2 TAKEUP(-) ORN
 3 GND WHT/GRN
 4 TAKEUP(+) BLU
 5 GND WHT/BLU
 6 FEED(-) GRN
 7 GND WHT/BRN
 8 FEED(+) BRN

 GENERIC OUTPUTS

 Since the first three output pins of the parallel port are used for
 tension motors, the remaining five pins are generic optically isolated
 12V outputs that can be used for various purposes. Often these are
 used to deenergize channels, allowing the software to unlock motor(s)
 on command, allowing the operator to freewheel the motor, then the
 software can re-home the motor on completion.

 Generic output control can be done via the 'home' command as configured
 in the HOMEDEFS.HOM file, using either the 'setbit' or 'clrbit' commands.
 Similar commands in the OPCSDEFS.OPC file and/or OPCS run scripts
 can be used to change the parallel port's bits via command control,
 e.g.

 ldefs -c setbit 0378 8 0 -- set parallel port pin #5 (bitmask 0x08)
 ldefs -c clrbit 0378 8 0 -- clear parallel port pin #5 (bitmask 0x08)

 ### OUT(5,6,7,8,9) OUTPUTS ###
 ### RJ-45 PINOUTS ###

 PIN# DESCRIPTION COLOR
 1 GND WHT/ORN
 2 GND ORN
 3 GND WHT/GRN
 4 N/C BLU
 5 GND WHT/BLU
 6 OUTPUT GRN <-- LOW=GND HI=+12V
 7 GND WHT/BRN
 8 +12 BRN

 GENERIC INPUTS

 The generic inputs IN(10) thru IN(13) and IN(15) can be used for either
 home sensors, buckle/viewer switches, etc. These respond to voltages
 typically 12V (for "on") or pulled to Ground (for off).

 +12 and Ground signals are provided on each RJ-45 port to be used for
 driving the home sensor's internal circuits and for 12v/Gnd reference.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

262

 Home sensors are typically configured for the 'home' command using the
 HOMEDEFS.HOM file's 'homeport' command, which procedures in that file
 can then use to test the home sensor to conditionally run motors.

 Buckle and Viewer switches can also be used to drive these inputs.

 Schematics are available on the website, and also are printed on the
 board's silk screen for reference, along with simple wiring diagrams.

 ### IN(10,11,12,13,15) ###
 ### RJ-45 PINOUTS ###

 PIN# DESCRIPTION COLOR
 1 GND WHT/ORN
 2 GND ORN
 3 GND WHT/GRN
 4 N/C BLU
 5 GND WHT/BLU
 6 IN GRN
 7 GND WHT/BRN
 8 +12 BRN

 INPUT JUMPERS

 To support both NPN and PNP home sensors, a jumper block is provided
 on the board to allow either type to be supported. The default is NPN,
 which is the most common sensor type. It is advised you standardize
 on only one type of sensor for all sensors, so they can be easily
 reassigned without having to change the jumpers.

 WARNING: BE SURE THE BOARD'S 12V POWER IS REMOVED BEFORE CHANGING JUMPERS.
 If you must change the jumpers while the board is "hot", remove
 both jumpers completely before replacing to the new positions.
 AVOID changing one jumper at a time, as that can short the 12V
 power supply during mid-change.

 CAVEATS

 The RJ-45 connectors labeled "X" are unused for I/O, but can be used
 for access to +12V and GND from the board for various purposes (such
 as 12V power lights, etc)

 On the REV 6 board, there are a TWO MINOR ERRORS that will be fixed
 in future revisions (probably REV 6A and up):

 > Many of the little diagrams on the silk screen are wrong.
 White labels are affixed over these problem diagrams to make
 corrections. All REV 6 boards in the field should already have
 these white 'fix labels' on them.

 > Two of the outputs, OUT(8) and OUT(9), do not match the normal wiring
 pattern of the other connectors. It's advised you do not use OUT(8)
 and OUT(9) on the REV 6 board, for consistency.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

263

REV 3 "Parallel Port Interface Board" - Feb 2010
==
 This board has a webpage with schematics, wiring diagrams, PCB layouts,
 photos, and other useful information here:

 http://seriss.com/opcs/docs/parallel-port-interface/rev3/

 The REV 3 board uses separate +5V and +12V power, to ensure complete
 isolation. But it is possible to use a single dual +5v/+12v power supply
 and share the signal ground.

 At the top, a parallel port connector is connected to the computer's

 parallel port via a ribbon cable. On the sides, power connectors for
 the input +12V and +5V. Along the bottom, RJ-45 connectors are used
 to fan out to the optical printer's sensors and motor controls; home
 sensors, tension motors, buckle/viewer switches, motor enable/disable
 controls, etc. It looks like this:

 PARALLEL PORT

 __|____________|______________________
_		_						
		+5/+12	____________	+5/+12				
		POW CHAIN _____ _____ POW						
	_	OUTPUT	_____		_____		_	
_______ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _								
	_______		_		_		_	
______ ______								
	______		______					
______________________________________ _______________________________________								
PWR PWR PWR IN IN IN IN IN	TEN TEN TEN OUT OUT OUT OUT OUT							
1 2 3 15 13 12 11 10	9 8 7 6 5 4 3 2							
______________________________________	_______________________________________							

 ___________/ ____________________/ ___________/ _____________________/
 RJ-45 RJ-45 RJ-45 RJ-45
 Power Inputs from Buckle, Tension Outputs for
 Outputs Viewer, Home sensors Motor various uses
 Outputs

 For the most part, the buckle/viewer sensors are configured by the
 BUCKLE(OPCSDEFS) and VIEWER(OPCSDEFS) commands in the OPCSDEFS.OPC
 file to define the port and bit mask values corresponding to the
 RJ-45 ports used for those features.

 The home sensors are configured in the HOME(DOCS) program's
 HOMEDEFS.HOM to define the port and bit mask values corresponding
 to the RJ-45 ports used for those features.

 The tension motor controls are configured with the TENSION(OPCSDEFS)
 command in the OPCSDEFS.OPC file to define the port and bit mask
 values corresponding to the RJ-45 ports used for those features,
 and are wired specially with Crydom solid state relays to control
 the AC tension motors.

 Various other inputs/outputs can be controlled by these ports, such as
 energizing/deenergizing certain motors via OPCS commands. An example
 would be the LOAD command, which might run the motors by small amounts
 to unseat the film, before deenergizing for manual adjustment.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

264

PARALLEL CONNECTOR
 The parallel connector on the OPCS parallel port interface board is
 a female DB-25 connector, which should be connected to one of the
 computer's parallel ports.

 PIN PORT MASK I/O RJ-45 DESCRIPTION
 2 0x378 0x01 Out OUT(2) Generic output
 3 0x378 0x02 Out OUT(3) Generic output
 4 0x378 0x04 Out OUT(4) Generic output
 5 0x378 0x08 Out OUT(5) Generic output
 6 0x378 0x10 Out OUT(6) Generic output
 7 0x378 0x20 Out OUT(7) Generic output
 8 0x378 0x40 Out TEN(8) Camera Tension
 9 0x378 0x80 Out TEN(9) Projector Tension
 10 0x379 !0x40 In IN(10) Generic Input
 11 0x379 !0x80 In IN(11) Generic Input
 12 0x379 0x20 In IN(12) Generic Input
 13 0x379 0x10 In IN(13) Generic Input
 15 0x379 0x08 In IN(15) Generic Input
 18-25 - - Gnd - Ground

RJ-45 CONNECTORS

 INPUTS - IN(10-15)

 The 5 generic inputs are real time inputs that can be read by the
 computer. The OPCS software can be configured to make use of these
 inputs by specifying the corresponding port/mask via the OPCSDEFS.OPC
 or HOMEDEFS.HOM files.

 Typically generic inputs are used for either home sensors or
 buckle/viewer switch sensing.

 ### IN(10) - IN(15) ###
 ### RJ-45 PINOUTS ###

 PIN# DESCRIPTION COLOR
 1 Chassis WHT/ORN
 2 GND ORN
 3 Chassis WHT/GRN
 4 - BLU
 5 Chassis WHT/BLU
 6 IN GRN
 7 Chassis WHT/BRN
 8 +12 BRN

 OUTPUTS - OUT(2-7)

 The 6 generic outputs can be controlled directly by commands in HOMEDEFS.HOM
 or OPCSDEFS.OPC, e.g. the SETBIT, CLRBIT, and XORBIT commands.

 Typically, generic outputs are used for deenergizing motors to allow
 manual load/unload of film with the custom LOAD and LINEUP commands.

 ### OUT(2) - OUT(7) ###
 ### RJ-45 PINOUTS ###

 PIN# DESCRIPTION COLOR
 1 Chassis WHT/ORN
 2 GND ORN
 3 Chassis WHT/GRN
 4 - BLU
 5 Chassis WHT/BLU
 6 OUT GRN
 7 Chassis WHT/BRN
 8 +12 BRN

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

265

 TENSION OUTPUTS - TEN(8) AND TEN(9)

 The tension motor outputs TEN(8) and TEN(9) can control the FEED and TAKEUP
 motors for camera and projector.

 When parallel port pin 8's bit changes from 0 to 1, the TEN(8) RJ-45
 connector's FEED and TAKEUP outputs will change state, always being
 the compliment of each other (ie. if FEED is 'on', TAKEUP will be 'off').

 ### TEN(8) AND TEN(9) ###
 ### RJ-45 PINOUTS ###

 PIN# DESCRIPTION COLOR CRYDOM PIN#
 1 Chassis WHT/ORN 4
 2 -TAKEUP ORN -
 3 Chassis WHT/GRN 3
 4 +TAKEUP BLU -
 5 Chassis WHT/BLU 4
 6 -FEED GRN -
 7 Chassis WHT/BRN 3
 8 +FEED BRN -

 POWER OUTPUTS - PWR(1) THRU PWR(3)

 PWR-1 through PWR-3 can be used to supply +12V power to the printer.

 ### PWR-1 THRU PWR-3 ###
 ### RJ-45 PINOUTS ###

 PIN# DESCRIPTION COLOR CRYDOM PIN#
 1 Chassis WHT/ORN 4
 2 GND ORN -
 3 Chassis WHT/GRN 3
 4 - BLU -
 5 Chassis WHT/BLU 4
 6 - GRN -
 7 Chassis WHT/BRN 3
 8 +12 BRN -

AUTHOR
 Greg Ercolano / Seriss Corporation 2009, 2021

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

266

rtmc16(DOCS)

RTMC16(DOCS) Optical Printer Control System RTMC16(DOCS)

NAME
 rtmc16 - notes on the Kuper Controls RTMC16 stepper motor control card

DESCRIPTION
 The Kuper Controls RTMC16 card is a "long slot" ISA card for the
 IBM PC that can generate steps/direction pulse streams to control
 up to 16 stepper motors at once.

 This is the first generation Kuper Controls card using mostly simple
 digital TTL circuitry that involves no firmware. Subsequently it's
 a a very dense board, but all the parts are user changeable with
 off the shelf chips.

 Bill Tondreau of Kuper Controls supplied these cards. They're
 somewhat of a rare item though, as they were superseded by the
 RTMC48.

RTMC16 DOS DRIVER
 OPCS communicates with the board via the MS-DOS device driver
 "MDRIVE.COM", which provides a standard low level interface to
 the card that OPCS can make use of to run the motors efficiently.

 NOTE: The MDRIVE.COM driver must be loaded before running the
 OPCS software. and can be installed either by the
 AUTOEXEC.BAT, or by a separate batch script.

 If the RTMC16 card's jumpers are default (BaseAddr=300 and IRQ=5),
 then you can install the driver by just running:

 mdrive

 If the RTMC16 is configured for a different base address or IRQ,
 then see below.

CONFIGURING THE BASEADDR AND IRQ
 In OPCS K1.xx, the base address is configured in STARTUP.DEFS
 using the 'baseaddr' command in that file. IRQ not configurable.

 In OPCS K2.00 through K2.09, the base address is configured in
 OPCSDEFS.OPC with the 'baseaddr' command. IRQ not configurable.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

267

 In OPCS K2.10 and up, the MDRIVE.COM driver allows both the
 base address and IRQ to be configured on the command line.
 The default would be:

 mdrive -b300 -i5 <-- Sets base address=0300h, IRQ=5
 | |
 | IRQ=5
 Base Addr=300

 ..and if your RTMC16 jumpers are set differently, then specify
 matching values accordingly. e.g. if the jumpers are set to
 BaseAddr=340 and IRQ=6, then start the driver with:

 mdrive -b340 -i6

 To list the MDRIVE driver's options, run 'mdrive -help'.
 If it does not show a list of options, then it is an older version
 that does not support command line options.

TECHNICAL SYNOPSIS
 When the software wants to move a motor, it provides 16 separate
 12 bit velocity values (one per motor channel) that we can call
 a 16 channel 'sample', and 120 of these samples are sent per second
 to the card using the RTMC16's hardware interrupt on IRQ 5.

 The software has to keep up with this transmission rate, otherwise
 it will lose track of the motor positions.

 The MDRIVE.COM device driver provides a 64k motor velocity circular
 ring buffer that the OPCS software constantly writes to while
 running the motors. The OPCS software uses INT 99h to communicate
 with the driver, providing the address of the ring buffer, and
 start/stop commands.

 The RTMC16 card generates 120 interrupts per second to the MDRIVE.COM
 driver, which feeds out 16 velocities per interrupt from the ring buffer
 to the card, rotated out to the motors on the NEXT interrupt tick.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

268

LOGIC CONNECTOR
 For the RTMC16 board, it is generally not recommended to use the
 built in "Logic Connector" for anything but inputs. It's best to
 use the parallel ports, or add-on 8255 based GPIO boards if lots
 of digital I/O is needed.

 KUPER CONTROL RTMC16 CARD CONNECTOR 'P2'
 (DB37S - 37 pin connector)

 1 - (*) 20 - +5VDC
 2 - STEP A 21 - DIR A DB37S (37 pin connector)
 3 - STEP B 22 - DIR B
 4 - STEP C 23 - DIR C
 5 - STEP D 24 - DIR D
 6 - STEP E 25 - DIR E
 7 - STEP F 26 - DIR F (*) = Jumper Select GND or +5 with JP5:
 8 - STEP G 27 - DIR G +5VDC - Short pins 1 & 2 on JP5
 9 - STEP H 28 - DIR H GND - Short pins 2 & 3 on JP
 10 - STEP I 29 - DIR I
 11 - STEP J 30 - DIR J
 12 - STEP K 31 - DIR K NOTE: All outputs are OPEN COLLECTOR
 13 - STEP L 32 - DIR L TTL. Maximum +5 current draw
 14 - STEP M 33 - DIR M should not exceed 400 milliamps.
 15 - STEP N 34 - DIR N
 16 - STEP O 35 - DIR O
 17 - STEP P 36 - DIR P
 18 - (*) 37 - +5VDC
 19 - (*)

 KUPER CONTROL CARD IRQ JUMPER SETTINGS (JP3)
 Selects the IRQ used for feeding velocities

 JP3 has a single jumper on one set of pins to set the IRQ;
 from left to right, pins set IRQ 2 thru 7, with 5 being the default:

 _
 JP3 | |
 o o o |o| o o
 o o o |o| o o
 | | | |_| | |
 | | | | | |
 | | | | | |__ IRQ7
 | | | | |_____ IRQ6
 | | | |________ IRQ5 <-- DEFAULT
 | | |___________ IRQ4
 | |______________ IRQ3
 |_________________ IRQ2

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

269

 KUPER CONTROL CARD SWITCH SETTINGS 'JP4'
 Selects the KuperBase address value
 (Jumpers A3-A9)

 This is the default configuration for 0300h:

 JP4
 _ _ _ _ _
 | || || || || |
 |o||o||o||o||o| o o
 |o||o||o||o||o| o o
 |_||_||_||_||_|

 A3 A4 A5 A6 A7 A8 A9

 Here's the table of the JP4 jumper variations from the
 RTMC16 manual, shown in "most likely to work" order:

 KuperBase
 Address A3 A4 A5 A6 A7 A8 A9

 0300 1 1 1 1 1 0 0
 0320 1 1 0 1 1 0 0
 0320 0 1 0 1 1 0 0
 0330 1 0 0 1 1 0 0
 0340 1 1 1 0 1 0 0
 0280 1 1 1 1 0 1 0
 02a0 1 1 0 1 0 1 0
 0308 0 1 1 1 1 0 0
 0310 1 0 1 1 1 0 0
 0318 0 0 1 1 1 0 0

 NOTE: 0 = off 1 = on

 Factory setting is 0300, and there is usually no need
 to modify this setting unless other boards in the machine
 are conflicting with this address. Same for the IRQ setting.

KUPER LOGIC CONNECTOR [R1]
Inputs are tied high to +5

 PIN NAME PORT MASK (hex)

 1 GND GND GND
 2 out 0 0x306 01
 3 out 1 0x306 02
 4 out 2 0x306 04
 5 out 3 0x306 08
 6 out 4 0x306 10
 7 out 5 0x306 20
 8 out 6 0x306 40
 9 out 7 0x306 80
 10-12 ??? ??? ??
 13 +5 +5 +5
 14 GND GND GND
 15 in 0 0x306 01
 16 in 1 0x306 02
 17 in 2 0x306 04
 18 in 3 0x306 08
 19 in 4 0x306 10
 20 in 5 0x306 20
 21 in 6 0x306 40
 22 in 7 0x306 80
 23-24 ??? ??? ??
 25 +5 +5 +5

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

270

KUPER "INDUSTRIAL" CARD

 The Kuper Controls "Industrial Card" is a 'half slot ISA' card,
 a variation on the RTMC-48. So for OPCS, install the "RTMC48.COM"
 driver.

 The "H1" 40 pin connector (upper-left) is the steps/direction.
 The "H2" 40 pin connector (upper-right) is the "logic" connector.
 For OPCS, only the "H1" connector should be used.

 On the H1 connector, pin #1 is at the lower-left of the connector
 (component side facing you).

 This card has 3 jumper blocks, whose "factory" settings are:

 JP1: o-o o -- sets voltage for pin #1 (OPCS: don’t care)

 JP2: o o o o o -- sets samples-per-second(?) (default: 120/sec)
 | | |
 o o o o o

 JP3: o o o o o o -- sets the IRQ (default IRQ 5)
 |
 o o o o o o

 ..where '-' is a horizontal jumper, and '|' is a vertical jumper.

KUPER PORT MONITOR PROGRAM
 The OPCS software comes with kuper.exe, a program that monitors
 the real time status of the Kuper logic port. Run 'kuper.exe'.
 This tool can be downloaded from http://seriss.com/opcs/ftp/

SEE ALSO
 RTMC48(DOCS) - notes on the Kuper Controls RTMC48 motor control card
 A800(DOCS) - notes on the OPCS/Seriss Corporation A800 motor control card
 8255(DOCS) - how to control 8255 based digital I/O cards
 KUPER(DOCS) - documentation on the kuper card connectors
 SD-1600(DOCS) - 16 channel stepper distribution board (simplify DB-37 wiring)

ORIGIN
 Gregory Ercolano, Topanga, California 04/12/00

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

271

rtmc48(DOCS)

RTMC48(DOCS) Optical Printer Control System RTMC48(DOCS)

NAME
 rtmc48 - notes on the Kuper Controls RTMC48 stepper motor control card

DESCRIPTION
 The Kuper Controls RTMC48 card is a "long slot" ISA card for the
 IBM PC that can generate steps/direction pulse streams to control
 up to 48 stepper motors at once.

 Bill Tondreau of Kuper Controls supplies these cards, and OPCS
 can it to control up to 16 motor channels with it.

RTMC48 DOS DRIVER
 OPCS communicates with the board via the MS-DOS device driver
 "RTMC48.COM", which provides a standard low level interface to
 the card that OPCS can make use of to run the motors efficiently.

 NOTE: The RTMC48.COM driver must be loaded before running the
 OPCS software. and can be installed either by the
 AUTOEXEC.BAT, or by a separate batch script.

 If the RTMC card's jumpers are default (BaseAddr=300 and IRQ=5),
 then you can install the driver by just running:

 rtmc48

CONFIGURING THE BASEADDR AND IRQ
 In OPCS K1.xx, the base address is configured in STARTUP.DEFS
 using the 'baseaddr' command in that file. IRQ not configurable.

 In OPCS K2.00 through K2.09, the base address is configured in
 OPCSDEFS.OPC with the 'baseaddr' command. IRQ not configurable.

 In OPCS K2.10 and up, the RTMC48.COM driver allows both the
 base address and IRQ to be configured on the command line.
 The default would be:

 rtmc48 -b300 -i5 <-- Sets base address=0300h, IRQ=5
 | |
 | IRQ=5
 Base Addr=300

 ..and if your RTMC48 jumpers are set differently, then specify
 matching values accordingly. e.g. if your RTMC48 card has jumpers
 set to BaseAddr=340 and IRQ=6, then start the driver with:

 rtmc48 -b340 -i6

 To list the RTMC48 driver's options, run 'rtmc48 -help'.
 If it does not show a list of options, then it is an older version
 that does not support command line options.

TECHNICAL SYNOPSIS
 When the software wants to move a motor, it provides 48 separate
 12 bit velocity values (one per motor channel) that we can call
 a 48 channel 'sample', and 120 of these samples are sent per second
 to the card using the RTMC48's hardware interrupt on IRQ 5.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

272

 The software has to keep up with this transmission rate, otherwise
 it will lose track of the motor positions.

 The RTMC48.COM device driver provides a 64k motor velocity circular
 ring buffer that the OPCS software constantly writes to while
 running the motors. The OPCS software uses INT 99h to communicate
 with the driver, providing the address of the ring buffer, and
 start/stop commands.

 The RTMC48 card generates 120 interrupts per second to the RTMC48.COM
 driver, which feeds out 48 velocities per interrupt from the ring buffer
 to the card, rotated out to the motors on the NEXT interrupt tick.

LOGIC CONNECTOR
 Controlling the Kuper Logic connector changed with the new RTMC48.
 Assuming the kuper base port is 0300:

 #define BASE 0x300

 /* WRITE 8 BITS TO THE LOGIC PORT */
 out(BASE+0x14h, byte);

 /* READ 8 BITS FROM THE LOGIC PORT */
 out(BASE+0x15h, 0x40); /* disable chip select */
 byte = inp(BASE); /* read data from BASE */

 Note that it is now easy to use the output port (it's dedicated),
 but is hard to do a read (it involves two operations).

 For using the OPCS software with the RTMC48, it is NOT RECOMMENDED
 you use the Kuper Logic connector for reading data. However, writing
 data appears to be ok.

 This is in contrary to the recommendations for using OPCS with the
 RTMC16, where use of the logic connector can be used for inputs only.

 KUPER CONTROL RTMC16 CARD CONNECTOR 'P2'
 (DB37S - 37 pin connector)

 1 - (*) 20 - +5VDC
 2 - STEP A 21 - DIR A DB37S (37 pin connector)
 3 - STEP B 22 - DIR B
 4 - STEP C 23 - DIR C
 5 - STEP D 24 - DIR D
 6 - STEP E 25 - DIR E
 7 - STEP F 26 - DIR F (*) = Jumper Select GND or +5 with JP5:
 8 - STEP G 27 - DIR G +5VDC - Short pins 1 & 2 on JP5
 9 - STEP H 28 - DIR H GND - Short pins 2 & 3 on JP
 10 - STEP I 29 - DIR I
 11 - STEP J 30 - DIR J
 12 - STEP K 31 - DIR K NOTE: All outputs are OPEN COLLECTOR
 13 - STEP L 32 - DIR L TTL. Maximum +5 current draw
 14 - STEP M 33 - DIR M should not exceed 400 milliamps.
 15 - STEP N 34 - DIR N
 16 - STEP O 35 - DIR O
 17 - STEP P 36 - DIR P
 18 - (*) 37 - +5VDC
 19 - (*)

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

273

 KUPER CONTROL CARD IRQ JUMPER SETTINGS (JP3)
 Selects the IRQ used for feeding velocities

 JP3 has a single jumper on one set of pins to set the IRQ;
 from left to right, pins set IRQ 2 thru 7, with 5 being the default:

 _
 JP3 | |
 o o o |o| o o
 o o o |o| o o
 | | | |_| | |
 | | | | | |
 | | | | | |__ IRQ7
 | | | | |_____ IRQ6
 | | | |________ IRQ5 <-- DEFAULT
 | | |___________ IRQ4
 | |______________ IRQ3
 |_________________ IRQ2

 KUPER CONTROL CARD SWITCH SETTINGS 'JP4'
 Selects the KuperBase address value
 (Jumpers A3-A9)

 This is the default configuration for 0300h:

 JP4
 _ _ _ _ _
 | || || || || |
 |o||o||o||o||o| o o
 |o||o||o||o||o| o o
 |_||_||_||_||_|

 A3 A4 A5 A6 A7 A8 A9

 Here's the table of the JP4 jumper variations from the
 RTMC16 manual, shown in "most likely to work" order:

 KuperBase
 Address A3 A4 A5 A6 A7 A8 A9

 0300 1 1 1 1 1 0 0
 0320 1 1 0 1 1 0 0
 0320 0 1 0 1 1 0 0
 0330 1 0 0 1 1 0 0
 0340 1 1 1 0 1 0 0
 0280 1 1 1 1 0 1 0
 02a0 1 1 0 1 0 1 0
 0308 0 1 1 1 1 0 0
 0310 1 0 1 1 1 0 0
 0318 0 0 1 1 1 0 0

 NOTE: 0 = off 1 = on

 Factory setting is 0300, and there is usually no need
 to modify this setting unless other boards in the machine
 are conflicting with this address. Same for the IRQ setting.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

274

KUPER LOGIC CONNECTOR [R1]
Inputs are tied high to +5

 PIN NAME PORT MASK (hex)

 1 GND GND GND
 2 out 0 0x306 01
 3 out 1 0x306 02
 4 out 2 0x306 04
 5 out 3 0x306 08
 6 out 4 0x306 10
 7 out 5 0x306 20
 8 out 6 0x306 40
 9 out 7 0x306 80
 10-12 ??? ??? ??
 13 +5 +5 +5
 14 GND GND GND
 15 in 0 0x306 01
 16 in 1 0x306 02
 17 in 2 0x306 04
 18 in 3 0x306 08
 19 in 4 0x306 10
 20 in 5 0x306 20
 21 in 6 0x306 40
 22 in 7 0x306 80
 23-24 ??? ??? ??
 25 +5 +5 +5

KUPER "INDUSTRIAL" CARD

 The Kuper Controls "Industrial Card" is a 'half slot ISA' card,
 a variation on the RTMC-48. So for OPCS, install the "RTMC48.COM"
 driver.

 The "H1" 40 pin connector (upper-left) is the steps/direction.
 The "H2" 40 pin connector (upper-right) is the "logic" connector.
 For OPCS, only the "H1" connector should be used.

 On the H1 connector, pin #1 is at the lower-left of the connector
 (component side facing you).

 This card has 3 jumper blocks, whose "factory" settings are:

 JP1: o-o o -- sets voltage for pin #1 (OPCS: don’t care)

 JP2: o o o o o -- sets samples-per-second(?) (default: 120/sec)
 | | |
 o o o o o

 JP3: o o o o o o -- sets the IRQ (default IRQ 5)
 |
 o o o o o o

 ..where '-' is a horizontal jumper, and '|' is a vertical jumper.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

275

KUPER PORT MONITOR PROGRAM
 The OPCS software comes with kuper.exe, a program that monitors
 the real time status of the Kuper logic port. Run 'kuper.exe'.
 This tool can be downloaded from http://seriss.com/opcs/ftp/

SEE ALSO
 RTMC16(DOCS) - notes on the Kuper Controls RTMC16 motor control card
 A800(DOCS) - notes on the OPCS/Seriss Corporation A800 motor control card
 8255(DOCS) - how to control 8255 based digital I/O cards
 KUPER(DOCS) - documentation on the kuper card connectors

ORIGIN
 Gregory Ercolano, Topanga, California 04/12/00

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

276

sd-1600(DOCS)

SD-1600(DOCS) Optical Printer Control System SD-1600(DOCS)

NAME
 sd-1600 - OPCS 16 channel "stepper distribution" (SD) card

DESCRIPTION
 The OPCS "Stepper Distribution" cards (SD-800, SD-1600) were
 designed to simplify wiring between the computer step pulse
 generator card (e.g. RTMC16, RTMC48, Kuper Industrial, A800..)
 and the motor drive modules (Centent, Gecko, LeadShine, etc)
 by breaking out the DB-37 connector into separate RJ-45 patch
 cables, one per stepper drive channel.

 This board really has no active features on it, other than a fanout
 to simplify wiring. Optional pullup resistor networks can be used
 if the application requires open collector outputs from the card
 to be pulled up to +5V for the idle state to prevent noise.

 As of this writing, there is only one version of the board, REV 0,
 which looks like this:

 DB-37 PORT
 (To RTMC or A800 cards)

 _______________________|____________________|____________________________
 | | | |
 | |____________________| |
 | |
 | |
 | |
 | |
 | ______________________________ ______________________________ |
	A B C D		I J K L	
	______________________________		______________________________	
	E F G H		M N O P	
__	______________________________	_____	______________________________	__

 ____________________________/ ____________________________/
 Eight RJ-45 Eight RJ-45
 Connectors Connectors
 (Two Tiers) (Two Tiers)

 Typically the female DB-37 connector on the board is connected
 to the DB-37 connector on the ISA stepper pulse generator card
 plugged into the the DOS computer using 6' male/male DB-37 cable.

 And separate RJ-45 patch cables are wired to the A/B/C/D..M/N/O/P
 ports at the bottom of the board, which run out to the individual
 stepper motor driver modules.

 The DB-37 follows Kuper's pinout; see 'man kuper' for more info.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

277

 The RJ-45 pinout diagram is documented on the board's silk screen,
 but is basically:

 RJ-45 WIRE CENTENT GECKO LEADSHINE
 PIN# SIGNAL COLOR (*) DRIVE DRIVE DRIVE
 ---- ----------- -------- ----------- ----------- ------------
 1 CHASSIS GND - N/C N/C N/C
 2 CHASSIS GND - N/C N/C N/C
 _ 3 CHASSIS GND - N/C N/C N/C
 DIR | 4 DIRECTION BLU DIRECTION (8) DIR DIR-(DIR)
 |_ 5 +5V WHT/BLU +5 VOLTS DC (10) COMMON DIR+(5V-24V)
 _ 6 CHASSIS GND - N/C N/C N/C
 STP | 7 +5V WHT/BRN N/C N/C PUL+(5V-24V)
 |_ 8 STEPS BRN STEP PULSE (9) STEP PUL-(PUL)

 (*) Premade RJ-45 patch cables for cat5 and cat5e usually have
 the standard wire colors shown above. For the signals used,
 the wiring colors are the same for 568A and 568B.

 The "chassis ground" signals are derived from the DB-37 metal shell,
 and the metal shell around the RJ-45 eight-connector-blocks. The signal
 path for the chassis ground is not required, and indeed the DB-37 female
 and RJ-45 connectors don't always have a metal shell provided.

 The RJ-45 cables are typically long cat5 or cat6 patch cables that
 are cut in half; the cut ends stripped and tinned with solder to
 connect the needed 4 conductors to the corresponding screw terminals
 on the motor drives.

 The Gecko and Centent drives only need three conductors:

 1. Steps (BRN)
 2. Direction (BLU)
 3. A single +5V wire common for the above two signals (WHT/BLU or WHT/BRN)

 The newer motor drives from China all have separate +5V connections
 for each of the signals, so all 4 conductors are used:

 > Steps (BRN)
 > +5V for steps (WHT/BRN)
 > Direction (BLU)
 > +5V for direction (WHT/BLU)

 Please note these signals are DIRECTLY FROM THE COMPUTER MOTHERBOARD,
 so be very careful with them. Do not let them short to chassis ground
 or to each other.

RJ-45 CABLE TERMINATION

 See OPCSIFACE(DOCS) for info on RJ-45 cable termination complete with
 diagrams and info about cable preparation, strain relief, etc.

AUTHOR
 Greg Ercolano / Seriss Corporation 2023

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

278

sd-800(DOCS)

SD-800(DOCS) Optical Printer Control System SD-800(DOCS)

NAME
 sd-800 - OPCS 8 channel "stepper distribution" (SD) card

DESCRIPTION
 The OPCS "Stepper Distribution" card (SD-800) was designed to
 simplify wiring between the computer step pulse generator card
 (e.g. RTMC16, RTMC48, Kuper Industrial, A800..) and the stepper
 motor driver modules (Centent, Gecko, LeadShine, etc) by breaking
 out the DB-37 connector into separate RJ-45 patch cables, one per
 stepper drive channel.

 This board really has no active features on it, other than a fanout
 to simplify wiring. Optional pullup resistor networks can be used
 if the application requires open collector outputs from the card
 to be pulled up to +5V for the idle state to prevent noise.

 As of this writing, there is only one version of the board, REV 0,
 which looks like this:

 DB-37 PORT
 (To RTMC or A800 cards)

 __________|____________________|_________
 | | | |
 | |____________________| |
 | |
 | |
 | |
 | |
 | ______________________________ |
 | | | |
 | | A B C D | |
 | |______________________________| |
 | | | |
 | | E F G H | |
 |____|______________________________|_____|

 ____________________________/
 Eight RJ-45
 Connectors
 (Two Tiers)

 Typically the female DB-37 connector on the board is connected
 to the DB-37 connector on the ISA stepper pulse generator card
 plugged into the the DOS computer using 6' male/male cable.

 And separate RJ-45 patch cables are wired to the A/B/C/D..
 ports at the bottom of the board, which run out to the individual
 stepper drives (Centent, Gecko, LeadShine, etc).

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

279

 The DB-37 follows Kuper's pinout; see 'man kuper' for more info.
 The RJ-45 pinout diagram is on the board, but is basically:

 RJ-45 WIRE CENTENT GECKO LEADSHINE
 PIN# SIGNAL COLOR (*) DRIVE DRIVE DRIVE
 ---- ---------- -------- ----------- ----------- ------------
 1 GND - N/C N/C N/C
 2 GND - N/C N/C N/C
 _ 3 GND - N/C N/C N/C
 DIR | 4 DIRECTION BLU DIRECTION (8) DIR DIR-(DIR)
 |_ 5 +5V WHT/BLU +5 VOLTS DC (10) COMMON DIR+(5V-24V)
 _ 6 GND - N/C N/C N/C
 STP | 7 +5V WHT/BRN N/C N/C PUL+(5V-24V)
 |_ 8 STEPS BRN STEP PULSE (9) STEP PUL-(PUL)

 (*) Premade RJ-45 patch cables for cat5 and cat5e usually have
 the standard wire colors shown above. For the signals used,
 the wiring colors are the same for 568A and 568B.

 Basically only 4 of the 8 wires are used. In some cases only 3 wires
 are used (Centent & Gecko).

 Please note these signals are DIRECTLY FROM THE COMPUTER MOTHERBOARD,
 so be very careful with them. Do not let them short to chassis ground
 on the printer, or to each other.

RJ-45 CABLE TERMINATION

 See OPCSIFACE(DOCS) for info on RJ-45 cable termination complete with
 diagrams and info about cable preparation, strain relief, etc.

AUTHOR
 Greg Ercolano / Seriss Corporation 2021

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

280

serial(DOCS)

SERIAL(DOCS) IBM PC Device Documentation SERIAL(DOCS)

 NAME
 serial - serial port pinout

 INT 14H BIOS Serial Communications

 AH=0 INITIALIZE PORT ---

 AL:
 7 6 5 4 3 2 1 0
 --- baud rate --- -parity - stopbit -- word length --
 000 - 110 x0 - none 0 - 1 10 - 7 bits
 001 - 150 01 - odd 1 - 2 11 - 8 bits
 010 - 300 11 - even
 011 - 600
 100 - 1200
 101 - 2400
 110 - 4800
 111 - 9600
 DX: 0=com1, 1=com2

 AH=1 SEND CHARACTER --

 AL: character to send
 DX: 0=com1, 1=com2

 ON RETURN:
 bit 7 of AH set if error occurred

 AH=2 RECEIVE CHARACTER --

 AL: character read
 DX: 0=com1, 1=com2

 PORT DLAB=0 DLAB=1
 3f8 - data in/out baud rate low
 3f9 - IER int enable baud rate high

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

281

 --- Ports when DLAB is set ---

 03f9 03f8 ACTUAL BAUD RATE
 09 00 50
 04 17 110
 01 80 300
 00 60 1200
 00 30 2400
 00 18 4800
 00 0c 9600
 00 01 real fast

 --- Ports when DLAB is clear ---

 03f8 - 8 bit data i/o (characters in/characters out)

 03f9 Interrupt Enable Register (IER)
 0 - Interrupt when character ready
 1 - Interrupt when transmitter holding register empty (THRE)
 2 - Interrupt when LSR has data ready
 3 - Interrupt when MSR has data ready
 4 - 0
 5 - 0
 6 - 0
 7 - 0

 3fa - IIR Interrupt Identification Register

 PortValue Description (Cause)
 --------- ---
 06h LSR has info (overrun/parity/framing/break interrupt)
 04h Data ready (character waiting)
 02h Transmitter Holding Register Empty (character was sent)
 00h MSR has info (CTS, DSR, RI, RLSD)

 3fb - LCR line ctrl
 0 word length (see below)
 1 word length (see below)
 2 Stop Bits
 3 Parity Enable
 4 Even Parity
 5 Stick Parity
 6 Set Break
 7 DLAB bit (access baud rate via 3f8 and 3f9)

 bit1 bit0 Word Length
 ---- ---- -----------
 0 0 5 bits
 0 1 6 bits
 1 0 7 bits
 1 1 8 bits

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

282

 3fc - MCR modem ctrl
 0 - Data Terminal Ready
 1 - Request To Send
 2 - Out 1
 3 - Out 2
 4 - Loop
 5 - 0
 6 - 0
 7 - 0

 3fd - LSR line status
 0 - Data Ready
 1 - Overrun Error
 2 - Parity Error
 3 - Framing Error
 4 - Break INterrupt
 5 - Transmitter Holding Reg Empty
 6 - Transmitter Shift Reg Empty
 7 - (always zero)

 3fe - MSR modem status
 0 - Delta Clear To Send
 1 - Delta Data Set Ready
 2 - Trailing Edge Ring Detector
 3 - Delta Rx Line Signal Detect
 4 - Clear To Send
 5 - Data Set Ready
 6 - Ring Indicator (=1 during ring voltage)
 7 - Receive Line Signal Detect (=1 when carrier appears)

 C:> mode com1 9600,n,8,1
 C:> debug
 - o 3fb 80
 - o 3f8 00
 - o 3f9 0c
 - o 3fb 03
 - o 3fc 03

 // UNTESTED
 // Might need to read LSR again to clear Data Ready bit?
 //
 while (1)
 if (inp(0x03fd) & 0x01)
 fprintf(stderr, "%c", inp(0x03f8));

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

283

 MODEM/SERIAL PORT WIRING

 25 PIN DCE (IBM computer, modems) 25 PIN DTE (terminal)

 1 (shield) 1
 2 TX ---- OUT 2 RX IN
 3 RX IN 3 TX OUT
 4 RTS --- OUT 4
 5 CTS IN 5
 6 DSR IN 6
 7 GND GND 7
 8 CD/RLSD IN 8
 9 (tx currentloop) 9
 10 10
 11 11
 12 12
 13 13
 14 14
 15 15
 16 16
 17 17
 18 (rx currentloop) 18
 19 19
 20 DTR --- OUT 20
 21 21
 22 RI IN 22
 23 23
 24 24
 25 (rx currentloop ret) 25

 9 PIN DCE (IBM computer, modems) 9 PIN DTE (terminal)

 1 CD/RLSD IN 1
 2 TX ------------ OUT 2 RX IN
 3 RX IN 3 TX ---- OUT
 4 DTR ----------- OUT 4
 5 GND GND 5
 6 DSR IN 6
 7 RTS ----------- OUT 7
 8 CTS IN 8
 9 RI IN 9

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

284

slosyn(DOCS)

SLOSYN(DOCS) Optical Printer Control System SLOSYN(DOCS)

 NAME
 slosyn - slosyn motor wiring notes

 SUPERIOR ELECTRIC 6 WIRE SLO-SYN
 INTERNAL WIRING DIAGRAM
 Centent and Anaheim terminals shown

 To rotate the motor, energize coils sequentially in the following order:
 P1, P2, P3, P4... I know it looks wrong, but that's how it works.

ANAHEIM **CENTENT** **CENTENT** ANAHEIM
 (LO) (HI) (LO) (HI)

 P1 6 6 RED ------O O------- G/W 3 x P4
 > <
 > P1 P4 <
 > <
 P1&P3 x 5 BLK ------O O------- WHT x 3 P2&P4
 > <
 > P3 P2 <
 > <
 P3 5 x R/W ------O O------- GRN 4 4 P2

 SUPERIOR ELECTRIC 8 WIRE SLO-SYN
 INTERNAL WIRING DIAGRAM
 Centent and Anaheim terminals shown

ANAHEIM **CENTENT** **CENTENT** ANAHEIM
 (LO) (HI) (LO) (HI)

 P1 6 6 G/W ------O O------- R/W 4 4 P4
 > <
 > P1 P4 <
 > <
 P1&P3 (ORN) 5 B/W ------O O------- WHT (BLK) 3 P2&P4

 P1&P3 5 5 GRN ------O O------- BLK (WHT) 4 P2&P4
 > <
 > P3 P2 <
 > <
 P3 (B/W) 6 ORN ------O O------- RED 3 3 P2

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

285

syntax(DOCS)

SYNTAX(DOCS) Optical Printer Control System SYNTAX(DOCS)

 NAME
 syntax - syntax of OPCS numeric and math expressions

 OPCS COMMAND SYNTAX
 Many commands can appear on one line, and a line can be up to 128
 characters (or can wrap around the screen about one and a half times).
 Commands and arguments are separated by white space (spaces or tabs).

 Commands that allow a variable number of fixed arguments, e.g. SEEK,
 RES, and RAT, they let you use '-' to skip arguments.

 Where appropriate, '>' can be used as a prefix to a numeric value
 to specify an absolute position in the context of frames to shoot,
 or motor positions to go to.

 Some commands expect frame specifications, which can be expressed in
 many different ways. Such a command is the 'CAM' command, and here are
 some valid frame specifications:

 cam 12 # run camera 12 frames
 cam -5 # run camera 5 frames in reverse
 cam 12'2 # run camera 12 feet 2 frames
 cam -15'0 # run camera in reverse 15 feet
 cam >34 # send camera TO frame 34
 cam >-34 # send camera TO frame -34
 cam >-12'3 # send camera TO negative 12 ft 3 frms
 cam (3+12*12) # run camera 147 frames
 cam (3+(3*sqrt(16)*12)) # same as above
 cam >(3+12*12) # send camera TO frame 147

 MATH EXPRESSIONS
 You can usually use math expressions in place of most numeric
 arguments as long as the expression is ENCLOSED IN PARENTHESES,
 and DOES NOT CONTAIN EMBEDDED SPACES. Example:

 (3+(3*sqrt(16)*12))

 Math can be done on frame counter values:

 (cam+3)

 For a complete list of all built in math operations, execute:

 (?)

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

286

 The following lists some of the operations supported by the
 math expression parser:

 /*** TYPICAL OPERATIONS ***/

 (3+4-2*12/6) # add, subtract, multiply, divide
 (533%256) # modulus
 (2^4) # exponentiation (powers)

 /*** OPCS VALUES ***/
 cam - camera counter value
 pro - main projector counter value
 pro1 - main projector counter value
 pro2 - aerial projector counter value

 /*** MATH FUNCTIONS ***/

 sqrt(), log(), exp(),
 sin(), cos(), tan(),
 asin(), acos(), atan(),
 atan2(), radians(), degrees()
 hex(), pi

 /*** NUMERIC EXPRESSIONS ***/
 -12 # negative 12
 +34 # positive 34
 0x3ff # hex representation for 1023 decimal

 DIFFFERENT APPROACHES YIELD SIMILAR RESULTS
 With few exceptions, there are usually two ways to do anything in the
 OPCS software. The following examples show two possible ways to do
 step printing:

 do 12 cam 1 pro 2 # take 1 frame of every second projector frame

 rat 2 1 rep 12 # same as above

 The following two examples show how to automate the wedging process:

 do 200 cam 2 pse # shoots 2 frames with a keyboard pause inbetween

 cam 2 # hitting the F4 key each time will shoot 2 frames
 # doing more or less the same as the above

 COMMAND LINE EDITING KEYS
 OPCS supports all of DOS's editing keys, such as F3 (retype a line but
 do not execute), LEFT and RIGHT ARROW keys for revealing characters
 from the last line typed, INSERT and DELETE keys, etc. Refer to your
 DOS manual for more on these editing keys and their use.

 In addition to the standard DOS editing keys, the F4 key is programmed
 by the OPCS software to RE-EXECUTE the last line typed with one key
 press. This is useful for doing wedges, or situations where manual
 stopping/starting is necessary.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

287

 SHELL EXECUTION
 Part of the system philosophy is to allow the user to their own
 custom programs/scripts from within OPCS, just like DOS commands.
 You can execute DOS commands by prefixing the command with a
 'bang' (!), e.g.

 ! dir *.run | more

 You can also use (!) to QUOTE a dos command, so that OPCS commands
 can be mixed with the dos commands:

 cam 12 ! echo Shot 12 frames ! pro 12 ! echo DONE
 ------------------- ---------
 The underlined commands are executed as DOS commands, the rest
 are executed as OPCS commands. Note how '!' turns DOS execution
 on and off throughout the line.

 This (!) technique is patterned after a similar technique used
 by programs that run under the UNIX operating system.

 ORIGIN
 Gregory Ercolano, Los Feliz California 12/15/89

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

288

versions(DOCS)

VERSIONS(DOCS) Optical Printer Control System VERSIONS(DOCS)

OPCS VERSION HISTORY/RELEASE NOTES

 These are in order of most recent versions first, oldest last.

K2.21/TC - 06/04/2024

 > Added OPCS_NOMOTOR_FRAME_DELAY environment variable to control
 the per-frame delay when simulating shutter runs with 'motors off'.
 Default is zero (no delay).

 > Restored Allstop key during 'motors off' shutter simulation,
 which was being ignored. (Needed to DisableKeyboardInts()
 for new allstop keyboard checking to work correctly)

 > Applied proofreader mods to manual pages. (MM)

 > Replaced break_up_line() with better, regression tested
 code that passes on linux with valgrind.

K2.20/TC - 05/11/2024

 > a800drv.com MUST block kb ints during motor runs.
 We /have/ to. If user keeps typing while motors are running
 with kb ints on, the buffer will fill and starts BEEPING
 which causes missed feeds to motors causing overtravel,
 and WITHOUT tripping a sync fault..!

 > Fixed weird issue with how INT 10 scrollup intercept handled.
 Noticed if A800DRV was installed, in VI if I G2 to goto line 2
 in a file, then hit 'dd', the line above would repeat into
 line 2. Fixed how comparisons work in that code, and BIOS fallthrus.

 > Makefile now maintains VERSION for all programs.
 Changed all .C and .ASM code to use new datetime.h/datetime.inc
 and made those files a dependency. Tweaked the datetime build tool
 to take -asm/-c arguments as well as the VERSION# info.

 > Added call to ForceUpdateCounters() to name_defs() so counters
 get renamed right away. (Old names A/B/C remained during 'home'
 operation.. only fixed up once OPCS fully initialized)

 > Moved all keyboard reading stuff to readkey.c::ReadKeyboard()
 which now checks the keyboard busy bit before reading inp(0x60),
 and handles extended keycodes and such.

 Doing this means ALL keyboard reading must use ReadKeyboard(),
 and never read inp(0x60) directly, otherwise it will miss key release
 events and such. Also, kb interrupts MUST BE OFF for ReadKeyboard()
 to work reliably, and the BIOS keyboard buffer must be flushed before
 and after, to avoid weirdness occurs.

 ReadKeyboard() should probably check (inp(0x21) & 2) to see if
 keyboard interrupts are on or off: if on, use kbhit() and getch(),
 and if off, read the raw hardware.

K2.15/TC - 05/11/2024 (not released, cleanup)

 TODO: Add code to a800drv INT 99 to halt on any fun call
 that's out of range. Use "jae" to test the value,
 and use existing print hex to show the bad AH value.
 Then port this change to RTMC48 and MDRIVE!

 o OPCS:
 > Supports 80x25, 80x40, 80x50 size screens.
 > Removed "Scroll Lock" key stuff, now adjust scroll height directly.

 o A800DRV:
 > Fixed screen scrolling intercept to support different sized screens.

 > Fixed INT 99/AH=05h "set video address".
 Was saving AX as address, but AH is already used for func#.
 Switched to use BX. (Apparently function unused, so bug unnoticed)

 > Unused scroll lock key stuff removed

 > Added GetScrollHeight() function (INT 99/AH=13) to return
 the current scroll height last set. Used by OPCS to restore
 scroll height during DOS commands.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

289

 > Unused keyboard intercept stuff removed
 What was that all about anyway? Thought it might be affecting
 key release stuff. It seems unused??
 TODO: PORT THIS CHANGE (AND OTHERS) TO MDRIVE AND RTMC48

 TODO2: Also, it's important that port 21h is saved during
 motor start, and restored on motor stop. The keyboard
 int bit must NOT DISTURBED OR CHANGED THROUGHOUT:

 If 'key' or 'jog' turns kb ints off, they must REMAIN OFF
 or the keyboard polling thing won't work; the BIOS KB INT
 routines will read port 60h, removing the scancode from the
 hardware buffer such that OPCS's ReadKeyboard() won't see it.
 This causes it to miss key release events.

 o Key events getting eaten: Is it the printf() library??
 Try not using printf/fprintf to put msgs on screen while
 kb ints are disabled.

 o home.exe (2.21):
 > Fixed sync fault issue caused by kbhit() in krun.c allstop checks
 > Added generation of "fault.txt" info file on sync fault errors.
 > Cleaned up 'home -v' output to be greppable/redirectable
 > Cleaned up print_cmd a bit

 o Rewrote keyboard reading from simple inp(0x60) to smarter
 handling of extended and typematic key codes (e.g. repeating HOME key
 problem)

 o jog: Added extra 4 channels MNOP for full 16 channel support (ferriter)
 UNTESTED WITH ACTUAL HARDWARE! Use 16chan board to test

 o Fixed weird keyboard hang when 'key' mode invokes DOS commands, e.g.
 keyfunc -add "! echo OK" 0060 ff 52 0060 80 80
 ^^^^^^^^^^^ ^^^^^
 DOS via OPCS Insert key (extended)
 Seems on return from execute_string() it's important to call
 clear_kb_buffer(), which uses kbit()/getch() to read any pending chars.
 Doing this before disabling keyboard ints seems to solve it.

 o 'hardware off' - now shutters run 1x at a time at 0.25sec spd
 (cam/pro/etc). This way 'key' mode for pro/cam slew works, and
 doesn't just immediately jump to the huge numbers it uses for slew.

 o readline:
 > Various small tweaks to support different sized screens.
 Also can now make use of last row. (Could not before)

K2.14/TC - 04/23/2024

 o Small code cleanup of opcs.c:
 > Move "Defs" struct initialization to opcsdefs.c -> InitDefs()
 > Keep init_globals() in opcs, which calls above
 > Remove old comments from opcs.c and new InitDefs() function
 > Removed commented out code

 o Small code cleanup of opcskuper.c:
 > Removed commented out code

 o Added ppr to homedefs.hom to affect motor speeds.

K2.13/TC - 04/21/2024

 o opcs.exe and home.exe: fixed bug detecting motor resident routines.
 They both would test a byte of the segement of the INT 99 vector
 for zero to see if motor routines not installed. But if DOS is
 efficiently stored in high memory, the segment byte CAN be zero,
 causing OPCS to not think motor drivers are installed when they are.
 We now test BOTH bytes of segment register for zero.

 o Fixed a bug that caused intermittant hangs when motors stopped running.
 This was in the A800DRV.COM driver. Particularly noticeable when
 running the HOME program repeatedly, e.g. do 200 home a b c.
 Details:
 Motor driver restores the old IRQ vector when motors come to a stop,
 but the IRQ interrupt service was using DOS (INT 21H) to do this.
 DOS must not be called from WITHIN an interrupt service, even for
 something as simple as changing interrupt vectors. Changed the code
 to change the vector directly, and that solved the instability.

 o gr: only rewrites file if changes were made

 o Created movop - general mocon file operations

 o velrep checked: pretty sure it detects buckle,

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

290

 even tho the manpage for velrep says:

 FUTURE
 o Add a way to specify BUCKLE/VIEWER/TRIP checks in .vrp file.
 (We only have AllStop checks currently)

 That warning does not seem to be true, if it ever was,
 so it was removed from the man pages.

 o readline(): uses BIOS to update cursor and print crlf
 on hitting ENTER, so "opcs > file" still lets user see
 what they're editing.

 o Fixed MRP manpage that was missing the [chan] spec

 o Fixes were made to the 'man ansi' that had errors in describing
 how to program keys using ANSI codes.

 o Fixed SAMPSPERSEC manpage to include new A800 REV-B firmware
 that runs the IRQs at 120 Hz, same value as the RTMC cards.
 Some other man pages were updated for this.

 o Found old calc program's source code, and added it to build,
 added readline() features for editing.

K2.12/TC - 08/19/2023

 o 'show' man page improved to show example output

 o gr: fixed text rendering problem

 Turned out the BEETLE computer's BIOS graphics pixel plot
 (INT 10H) corrupts the app! Wrote my own pixel plotting into
 screen memory and the problem went away. Phoenix BIOS pixel plot
 can't be trusted!

 After writing my own text rendering code in grfont/*, it's probably
 all for naught, and can fall back to printf() and friends, and just
 replace the Plot() code in gr.c with grfont/grfont.c's gr_plot() code.

K2.11/TC - 03/22/2022

 o jog: fixed problem with slew (9) and (3) keys
 "jumping" on short runs.

 o a800drv: Had to detect display: color (b800) vs. mono (b000)
 for beetle to keep up. update_counters updating both color+mono
 seemed to prevent motor updates from being fast enough (?)

 OLD: update_counters was slapping to BOTH b800h and b000h
 NEW: Code now determines video mem address using INT 11H

 XXX: ***WHY*** wasn't the above problem causing a sync fault?!
 If user program not fast enough, should have triggered a fault.
 Look into what was happening/why this is.

K2.10/TC - 02/16/2022

 o Added new "velsav" OPCS command

 o A800DRV.COM + RTMC48.COM + MDRIVE.COM
 Fixed recursion error: kb_int handler was calling 'int 99h' to
 redisplay counters which eventually cause a reentry, tripping a
 "@@@ RECURSION" error w/main app! All previous releases have
 this bug, not only K2.00 - K2.05, but even all K100 releases!

 NOTE: In Feb 2022, backported this fix to 2.05 and older versions;
 see "K2.06" for details.

 o TODO: TEST MDRIVE.COM MODS WITH MOTORS!

 o A800DRV.COM - added -b/-i/-h command line flags to set irq/baseaddr.
 This is now the only way to set the IRQ/baseaddr.
 Obsoletes the 'baseaddr' command in OPCSDEFS.OPC and HOMEDEFS.HOM

 o 'baseaddr' removed from the Kuper structure from 'OPCS' and 'HOME'
 applications. NOTE: All DOS drivers must be updated:

 A800DRV.COM - Done K2.10/TC - working 01/17/22 TESTED
 RTMC48.COM - Done K2.10/TC - working 01/19/22 UNTESTED <-- found above recursion error during testing
 MDRIVE.COM - DONE K2.10/TC - working 01/21/22 UNTESTED

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

291

 o PrintRing() modified to show DSEG:OFFS for addresses instead of just
 decimal numeric offsets. (Useful for debugging)

 o jog: get rid of "To zero fader use 'cls'" msg (uses cls automatically)

 o jog: 'Reset' now shows blinking cursor at line being edited

 o 'interp d - 0 0 0' (to disable previous interp) is now in man page

 o 'bigcounters yes' now shows warning hashmark on digit overflows

 o Added 'velsav' command

 o (WIP) velrep: add 'lastrep <label>'

K2.06/TC - 02/17/2022
 o THERE'S NO CHANGES TO OPCS IN THIS MAINTEANCE RELEASE,
 but it's being given a number anyway. It's really K2.05
 with a fix to the A800DRV driver.

 Back ported "reentry" recursion fix to A800DRV from K2.10.
 The src fix is in OPCSK200\SRC-BAK\FERRITER.FIX*.*

 This 2.06 "maintenance release" was *NEEDED*, because in K2.10
 the kuper struct changed size making it ABI incompatible with K2.05.
 (The baseaddr removed from kuper struct in favor of setting it
 as a driver cmd line option).

 So:
 A800DRV.BAD -- Has reentry BUG (v4.01), released w/K2.05 and older
 A800DRV.ASM -- Has fix (v4.02), should be given to anyone with
 K2.00 - K2.05.

K2.05/TC - 07/30/2021

 o 'bigcounters yes': moved cam/pro/rat/fade labels right one char
 to line up with inside of box (like nixie) so single letter labels
 (A,B,C..) indicate CLEARLY which box they're labeling.

K2.04/TC - 07/29/2021 -- Carl Spencer release

 o Changed nixie display to be one line smaller by optimizing
 the use of inverse text. This led to complications due to
 how x,y addressing is affected by the invisible mode chars,
 necessitating a FindXY() function that works but is kinda
 inefficient. See opcsdisp.c for "FUTURE" to improve this maybe.

 o Copied over slap_screen: code from A800DRV.ASM
 to RTMC48.ASM and MDRIVE.ASM (without it, nixie counters
 weren't drawing properly, due to changes in mode chars)

 o Verified runbar shows msg correctly in all counter types

 o Verified counters don't wrap into runbar for all counter types

 o Force jog to always leave cursor in same position so when
 'unlock' is used (U), message prompts during unlock are seen correctly

 o Made sure that running 'rep 5 cam 5 pro 5' shows in runbar
 for all counters: "Rep", then "Cam Shoot", then "Pro Shoot".

K2.03/TC - 03/09/2021

 o Fixed bug in LOG(OPCS) that caused a "division by zero"
 if 'log' was used with FPF(OPCSDEFS) set to 0 for a channel.

 o Fixed bug with: cam >-1'30
 ..where negative footage counts wouldn't correctly range-check
 the trailing frames value

 o Aborted attempt to support floating point fpf.
 Saved work in "floatfpf", previous work in "intfpf".
 See floatfpf.txt for info.

K2.02/TC - 03/07/2021 - Mike Ferriter IMAX <-> 10 Perf 70

 o Fixed bug in 'POST MORTEM'; when debugging enabled,
 junk[] array was [12] instead of [16]

K2.01/TC - 03/04/2021
 o When 'respond' enabled, 'cmdline' forced to 'dos' mode

K2.00/TC - 05/17/2020
 Ported k1.16 to Turbo C 3.0, fixed various bugs in the process.

 o log off: forces log_counters() before closing log

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

292

 (so previous command's effects shown in log before 'log off')

 o flog: fixed bug in fade_log(), where flog=(-1 .. 1)
 was returning the raw fraction (0..1) instead of (start..end).
 SHOULD BACK PORT FIX TO K1.16

 o Got rid of redundant defs->nomotors, replaced with postive logic
 of env->motors.hardware

 o Various fixes to expand_vars/string_replace handling:
 Sometimes args[2] referenced even if NULL
 Variables could expand to garbage if beyond range of args[].
 (Had a > vs >= test error)
 Better warning messages for corner cases

 o Fix commands that act badly when no args given:

 seek check chk go rat rep cam pro pro2 fdi/fdo/dxi/dxo

 o Errors in OPCSDEFS file now report line#.

 o INTERNAL CHANGES:

 > Got rid of all old EMC subroutines, nuked MOTORSUB module.
 Switched to a cleaner module arrangement; see README.txt
 for more info on the module breakdown.

 > RTMC48.ASM modified (now v3.10 - 05/04/2020):
 Changed STI to CLI at top of kuper_int to prevent timer
 interrupt from triggering during motor servicing.
/|\
 |
K200 (Turbo C 3.0 "Pandemic Port" 05/17/2020)

==
==
==

K100
 |
\|/

K1.16 - 05/02/2020
 o Fixed 'show' command not showing if other commands followed it. e.g.
 show cam 1
 ..would not show anything, but ran cam command OK.

 o Added 'check' command, e.g. 'check abc 1000,2000,3000'.
 Also now uses channel names from startup.defs instead of
 hard coded names.

 o Added check for OPCS_NORESSHU variable -- if set,
 using 'go' with abc channels will leave step values in counters.

 o There may be a bug in 'go' with long motor runs, e.g.

 go ab 2000 go ab -8000
 _________/
 This will sometimes run MORE THAN 8000,
 in a scope grab, it ran 8100 instead of 8000

 Might be a bug in driver's or code's handling when buffer full,
 or handling wrap around. INVESTIGATE! Scope says a800 is sending
 sometimes more/sometimes less pulses than the software sends. WHY?
 Either bug in driver, or bug in 8255 communications timing, or..???

K1.15 - 04/16/08 o velrep would crash if filename didn't exist,
 or on other file related errors. velrep
 'Free' routines were not checking for NULL.

 o velrep docs modified to indicate the + postfix
 would either increment OR decrement the frame
 counter based on the velocity's sign (direction).

 o home: added OPCSDEBUG to help and man page

 o velrep mem leak: wasn't free()ing stop/goto/loop labels

 o go mem leak: seems like hfree() wasn't freeing the
 halloc()s correctly, causing mem to slowly leak.
 Solution: FreeRingBuffer() hfree() commented out,
 run hfree() only on opcs_exit()

 o To make room for more ram:

 rtmc48/mdrive: Made environment smaller: 25000 -> 20000

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

293

 (Only need 19660) Run 'defs' or 'show -d' to determine
 Environment size.

 Changed MAXSCRIPTS from 20 to 16

 velrep: Added CHUNKSIZE to realloc()s to prevent
 mem fragmentation.

 o Added 'log <MM-DD-YY>" to automatically create
 a datestamped log file.

K1.14 - 04/27/03 o Adding new OPCS command 'velrep', added VelRep.C.
 (For Technicolor)
 o Modified 'man rtmc48' to include kuper diagram.
 o Fixed bugs in evalnum.c as per linux port
 o Fixed bug in opcssubs.c as per linux port

K1.13d - 03/15/02 Fixed 'mov' docs; references to 'h' channel changed to 'f'
 8255.exe modified to let user change outputs (v2)
 No changes to OPCS that I know of otherwise.

K1.13c - 12/19/00 BUGFIX: seek couldn't handle different PPR values

K1.13b - 02/05/99 BUGFIX: ARGH! All math functions were offset!! ALL WERE WRONG!
 BUGFIX: seek 10 10 - seek 10 10 seek 10 10 -

 This would run at NON-slew spd
 BUGFIX: (6*(3'0)) and (6+4'0) doesn't work!
 Unfortunatly all this stuff was broken; parser
 numeric parser was checking for ' anywhere in
 the ENTIRE FORMULA, and not stopping at end of
 numeric value.
 ENH: Added (?) to print actual evalnum help

K1.13a - 07/11/98 BUGFIX: ease had trouble with numbers >+-32768.
 Problem was Round() returned an int, and
 easediff variables were int instead of Pos.
 ENH: home now has 'reset [chan] [val]'
 ENH: gr has 'v' to plot vels
 ENH: pending feeds are now shown in the runbar
 BUGFIX: BAD BUG in shutter.c since k1.13: 'cam 110' didn't
 actually shoot 110 frames, and left motor out of
 sync. Bug was in DumpVels() being called under non-
 allstop situations.
 ENH: runcmd now allows -1 as #args for variable args.
 Also, existence of .HLP files are checked, and printed
 during errors in number of arguments.
 ENH: $* now expands ALL variables.

K1.13 - 06/18/98 BUG FIX - 'FDI 2 CAM 10' would stop/go shoot last 8
 BUG FIX - 'SHU 50 RESET D 0 SEEK 1 1' moves fader?!
 Created SetCounter() that updates both counter and
 defs->fader.
 BUG FIX - mods to shutter.c so key release while in key(OPCS)
 mode dumps part of ring buffer, making motors stop
 quicker. [Added DumpHalfStack()]
 ENH: Added cam/pro variables to evalnum
 ENH: Added 'DO UNTIL (CAM=12) ..', modified manpage
 DOC: Added manpage for debugger(OPCSDEFS)
 ENH: home program now has a 'default' clause, so 'home'
 without args can be _controlled_
 ENH: Added spdinterp(DEFS) to allow zoom to affect exposure
 automatically.
 Introduced: ease.exe and gr.exe for doing pans/zooms.

k1.12f - 05/13/98 Added faderdisplay [on|off] for cinetech

k1.12e - 04/10/98 Added defs:
 '@', 'echo' 'buckle' 'viewer' 'filter' 'keyfunc'
 Obsolete:
 'buckview' 'deenergize' 'keydef'
 Added opcs: 'autofilt'
 Seek now ignores viewer, but still senses buckles
 Redraws allstop msgs w/out flashing after cont/abt.
 Added autofilt(OPCS) and filter(OPCSDEFS)
 Made man pages for logformat, and all new commands
 Added +-*/ to SPD(OPCS): OK
 Added '-all' flag to SHOW(OPCS): OK

k1.12d - 04/07/98 BUGFIX: pro2display disables ratio too
 BUGFIX: Enabled runbar() again (been off how long?!)
 Status line is now:
 <-0 RUNBAR 24-><-25 SCRIPT 52-><-53 FADE/DX 79->

k1.12c - 04/02/98 added defs: pro2display, set/clr/xorbit
k1.12b - xx/xx/9x added 'logformat' command

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

294

k1.12a - xx/xx/9x added feet/frames to logcounters
k1.12 - xx/xx/9x FINAL FIX for stupid screen scroll problem (mdrive.asm)
k1.11e - xx/xx/9x -x flag added to fdi/fdo/dxi/dxo
k1.10e - xx/xx/9x rat 1 0 1: fix to run in tandem
k1.10d - xx/xx/9x key: projector run keys don't check buckview now.
k1.10c - xx/xx/9x Bugfix for (176'-32) vs (176'0-32) in evalnum.
k1.10b - 08-06-92 key wont cls after called from script
k1.10a - 07-24-92 ALT-letter works a little better.
k1.10 - 05-29-92 Added softlatch to handle kuper's I/O port card
 (which can be written to, but not read). Added
 'rat 4 4' to shoot 4, advance 4, shoot 4, etc.
k1.09 - 04-22-92
 SPD BUGFIX: opcsdefs wasn't passing speed scale to kuper subs
 BIG BUG FIX --> in shutter: ContShut(): slow speeds caused
 no ramping (ok), but an allstop failed (stopped out
 of home) because rdsamp/allstop checking weird.
 Put allstop opportunity AFTER vels get sent.
 ALSO: ShutterStop() wasn't checking for non-ramp case
 properly, and incorrectly computed if in midst of
 rampdown (added /32, and more reliable check. TESTED)
 Symptoms were stalls.
 ALSO: ContShutter() wasn't pointing ASADDR to velstop stack
 values (non-ramp), caused intermittent stall if ASTOP
 occurred during ShutterFlush() (which uses ASADDR if
 someone hits allstop)
k1.08 - 04-21-92 prophase added, spd(DEFS) handles '-' for any args.
k1.07 - 04-13-92 Added frange(OPCSDEFS) command at Tony's request.
k1.06 - 04-08-92 Bug fix in motorsubs.c: RampDownNow():
 ONTHEFLYRAMPDOWN. Bug fix: JOG: crawl FWD/REV now updates
 large display, improved bar() subroutine for faster display.
k1.05 - Added keydef(OPCSDEFS), JogRelease() etc.
k1.04 - is_all_stop_key() checks for allstop key even if 'motors off'.
 execute_args() now checks custom commands for all arguments.
k1.03 - Added 'respond', centralized the ALLSTOP handlers to the
 subroutines in OPCSSUBS, put in IFDEF OPCS clause for code
 in motorsubs.c, Evalnum: hex() function added,
 opcsjog: key->changed=0 when called. Seek added to KEY(OPCS).
k1.02f - run()'s ReadLine() modified: 199 changed to MAXLINECHARS,
 ReadLine() modified to handle 'Line too long' errors.
 Added ALT+chan letter to JOG.
 Fix run() to break when skipping if EOF reached.
 Jog comes up with 'D' as default instead of 'A'

k1.00 - This is a complete rewrite for use with kuper card and EMC subs.
 Customers wanted a microstepper version for their precision printers.

/|\
 |
K100 MICROSTEPPER

== =====================================
== k1.00 - Kuper Microstepper Version =====================================
== =====================================

HALF STEPPER
 |
\|/

3.00f - OPCSDEFS.C modified out redundant 'IsBadMotor()' calls.
3.00e - EFW Bugfixes:
 o PANIC/ABORT in a RUN file would continue anyway
 with next line. err=execute_string() in OPCSCMDS.
3.00d - REP >54 and REP PRO >54, added fpf_eval_num_expr(), fixed
 'K' in bignum.
3.00c - Fix:'motors off cam 12 motors off' screws up old counts.
 Added $1 $2 variable passing to RUNCMD.
 VCE's "102 PRINTER" RELEASE.
3.00b - Fix to seek() [seek 1 1 1 then seek 1 would run 1 1 1]
3.00a - JOG has inching, frame windoffs. (needs set-keys, slaving)
 Motor routines called w/func ptrs for counter updates. Slop
 routine bugfix. opcs has arg for different OPCSDEFS.OPC file.
3.00 - 12 channels supported, added +/- ratio to KEY. MANY subroutines
 have been modified in OPCSRAMP.C, and allstop() handling was
 greatly modified. Fix to SlopCorrection(). Fix to EvalFrameSpec:
 changed (int) typecast to (Frame). Added counter/rat sets to
 key_cmd, et al. Put back load_cmd.
2.10f - fixes to opcsinterp.c Lookup2Steps(using a [high] value would
 produce huge numbers) and to opcsramp (0xff instead of 0xffff).
 CS_WAIT has STI now. (bug came up in 103.00)
2.10e - timeinterp uses seconds/cycles, feed allows floats for interp
 channels.
2.10d - fixes to opcsinterp.c (free samp), jog added, fix ppr=1 slow
 added * for a chan spec, Chan2Bin() 'total' now a ptr, bug
 fix in GetFaderValue() to check for defs->interp==NULL,
 res2,rat2,seek2,chk2 have been phased out.
2.10c - floor(), fixes to step_cmd, opcsline.c, opcseval.c

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

295

2.10b - feed, step uses interps (ffocus, etc), PreCamEvent()
2.10a - timeinterp uses pps instead of seconds
2.10 - Large model, float interps, time interp, all 8 motors run
2.01b - buckle check BEFORE running motors, load removed
 VCE's "103 PRINTER" RELEASE
2.01a - key, load, lineup, less runbar calls, step abc no counter
2.01 - ramping, fast seek, pro2display bugfix, dirxor bugfix
2.00c - fix to SEEK..ShootRatio() contained wrong ratio
2.00b - fix to OPCSBIG (added NULL in pattern[] init), dutycycle, deen
2.00a - fix to shutdrvr.asm for projectors going 1/2 out of phase
2.00 - Parallel/steps/direction, 8 motor max, concurrent shooting.
1.50 - Commands and code added for DUAL projectors.
1.40a - Fixes to allstop handler, and DBXSAVE->COUNTER is now 'int'
1.40 - Lock command added, check buckle during shoot, allstop/buck
 checked in C, DBX saves/restores counters.
1.38 - Local/Public motor subs, contrived msg, (needs init code)
1.37d - step modified with optional arguments,log handles #-----
1.37c - better /etc/crash handling, LPT1/LPT2 hardware checks
1.37b - cam >-2 bugfix, debug info commented out (ONEIL 1/3/89)
1.37a - spacebar for allstop, double_check_hardware().

VERSION HISTORY

 APPLE][+ OPCS: 1985 - 198x

 OPCS was initially conceived in the mid 1980's while I was a
 student at Calarts (82-86). Written in APPLE][+ BASIC and 6502
 Assembly, this version was used by students until the late 80's.

 HALF STEPPER (PARALLEL PORT) OPCS

 In 1988 Pat O'Neil asked if I could provide OPCS for one of his
 printers. The software was rewritten on the IBM PC in C and 8086
 assembly. This version built with the Microsoft V1.0 compiler,
 and was used by Pat O'Neil (Lookout Mountain Films) and Pete Kuran
 (VCE), and
 replaced the Apple][+ system at Calarts.
 , using the parallel port to drive the motors dirctly.

 MICROSTEPPER (KUPER) OPCS: 1.xx

 When Bill Tondreau started Kuper Controls, he and I worked a deal
 where I could use his RTMC16 microstepper pulse generator cards
 on the PC to drive motors instead of parallel ports. This was
 used on Pat O'Neil's second printer, with Centent microsteppers.
 This became the "K100" version of OPCS. This version was licensed
 to many companies; Title House, Introvision, Technicolor, YCM,
 Cinetech, etc, etc. This version supports the RTMC16, RTMC48, and
 Kuper Industrial cards using different DOS TSR drivers.

KUPER OPCS: 2.xx
 During the world pandemic of 2020, I ported the code to Turbo C 3.0,
 and also developed my own microstepper card, the A800. This version
 continued support of all the above Kuper cards and the new A800.
 Turbo C had better error checking and modern C prototyping.

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

296

http://seriss.com/opcs/images/opcs-lineup-chart-6k-2024.png

© Copyright 1997,2007 Greg Ercolano. All rights reserved.
© Copyright 2008,2024 Seriss Corporation. All rights reserved.

297

	OPCS screenshot.
	quickref(DOCS)

	This page intentionally left blank.
	INTRO: OPCS
	autofilt(OPCS)
	!(OPCS)
	cam(OPCS)
	check(OPCS)
	chk(OPCS)
	comment(OPCS)
	custom(OPCS)
	do(OPCS)
	dxi/dxo(OPCS)
	fdi/fdo(OPCS)
	feed(OPCS)
	go(OPCS)
	jog(OPCS)
	key(OPCS)
	ldefs(OPCS)
	l
	ineup(OPCS)
	load(OPCS)
	l
	og(OPCS)
	motors(OPCS)
	opncls(OPCS)
	pro(OPCS)
	pse(OPCS)
	rat(OPCS)
	rep(OPCS)
	res(OPCS)
	reset(OPCS)
	run(OPCS)
	seek(OPCS)
	show(OPCS)
	shu(OPCS)
	spd(OPCS)
	unlock(OPCS)
	velrep(OPCS)
	velsav(OPCS)

	This page intentionally left blank.
	INTRO: OPCSDEFS
	allstop(OPCSDEFS)
	!(OPCSDEFS)
	baseaddr(OPCSDEFS)
	bigcounters(OPCSDEFS)
	buckle(OPCSDEFS)
	clrbit(OPCSDEFS)
	cmdline(OPCSDEFS)
	debugger(OPCSDEFS)
	dirxor(OPCSDEFS)
	doscmd(OPCSDEFS)
	echo(OPCSDEFS)
	faderdisplay(OPCSDEFS)
	filter(OPCSDEFS)
	flog(OPCSDEFS)
	fpf(OPCSDEFS)
	frange(OPCSDEFS)
	hardware(OPCSDEFS)
	interp(OPCSDEFS)
	jogstep(OPCSDEFS)
	keyfunc(OPCSDEFS)
	logcounter(OPCSDEFS)
	logformat(OPCSDEFS)
	mrp(OPCSDEFS)
	name(OPCSDEFS)
	opcscmd(OPCSDEFS)
	ppr(OPCSDEFS)
	pro2display(OPCSDEFS)
	prophase(OPCSDEFS)
	ramp(OPCSDEFS)
	rampcurve(OPCSDEFS)
	respond(OPCSDEFS)
	runcmd(OPCSDEFS)
	sampspersec(OPCSDEFS)
	seekcap(OPCSDEFS)
	setbit(OPCSDEFS)
	slop(OPCSDEFS)
	spd(OPCSDEFS)
	spdinterp(OPCSDEFS)
	tension(OPCSDEFS)
	tripswitch(OPCSDEFS)
	viewer(OPCSDEFS)
	xorbit(OPCSDEFS)

	INTRO: DOCS
	8255(DOCS)
	nextstep(DOCS)
	a800(DOCS)
	ascii(DOCS)
	centent(DOCS)
	ciodio24(DOCS)
	ciodio48(DOCS)
	connectors(DOCS)
	ease(DOCS)
	gecko(DOCS)
	gr(DOCS)
	home(DOCS)
	kuper(DOCS)
	math(DOCS)
	mov(DOCS)
	opcs(DOCS)
	opcsdefs(DOCS)
	opcsetup(DOCS)
	opcshard(DOCS)
	opcsiface(DOCS)
	parallel(DOCS)
	pio-100(DOCS)
	rtmc16(DOCS)
	rtmc48(DOCS)
	sd-1600(DOCS)
	sd-800(DOCS)
	serial(DOCS)
	slosyn(DOCS)
	syntax(DOCS)
	versions(DOCS)

	http://seriss.com/opcs/images/opcs-lineup-chart-6k-2024.png

